

"GRAL NOTES" BUILDING SETBACK LINE -ELECTRIC TELEPHONE & CABLEVISION EASEMENT ---- E.T.TV.E. ELECTRIC & CABLE TELEVISIGSEMENT — E.TV.E. TELEPHONE & CABLE TELEVISASEMENT — T.TV.E.

GAS, ELECTRIC, TELEPHONE BLE TELEVISION EASEMENT ----- G.E.T.TV.E. THE NUMBER OF WASTEWATRUIVALENT DWELLING UNITS (EDUS) PAID FOR THIS SUBDIVISION PLAT ARE KEPTFILE AT THE SAN ANTONIO WATER SYSTEM UNDER THE PLAT NUMBER ISSUED HE DEVELOPMENT SERVICES DEPARTMENT.

[960]

 PROPOSED FINISHED CONTC THE VALUE OF THE THREE SPE COORDINATES SHOWN HEREON WERE OBTAINED WITH GLOBAL POSITIONING RECEIVEITH REFERENCE TO
 DATUM IS NADB3 (ADJUSTM1993) CONVERTED TO FEET. STATE PLANE COORDINATES GRID

STATE PLANE COUNTINATES GRID
SCALE FACTOR IS
ROTATION GRID TO PLAT IS

12.) R.P.R. = OFFICIAL PUBLIC RDS OF REAL PROPERTY, BEXAR COUNTY, TEXAS.
D.P.R. = DEED AND PLAT RDS, BEXAR COUNTY, TEXAS.

13.) FINISHED FLOOR ELEVATIONSST BE A MINIMUM OF 8 INCHES ABOVE FINISHED

ADJACENT GRADE 14.) CONTROL MONUMENTS AS SN 14.) CONTROL MONUMENTS AS SN
IT IS THE PRACTICE OF W.FSTELLA & ASSOC. TO MONUMENT ALL CORNERS
(IF PRACTICAL) IN THE SUBION UPON COMPLETION OF CONSTRUCTION.
TYPICAL MONUMENT IS A 1/EBAR WITH A "CASTELLA & ASSOC." PLASTIC CAP.
(*) INDICATES A FOUND 1/EBAR WITH A "CASTELLA & ASSOC." PLASTIC CAP.
15.) BASIS OF BEARING RECITEDIEIN IS

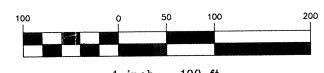
"C.P.S. NOTES AND LEGEND"

C.P.S. NOTES AND LEGEND

1.) THE CITY OF SAN ANTONIO AS A PART OF ITS ELECTRIC AND GAS SYSTEM (CITY PUBLIC SERVICE BOARD) IS HEREBY DEDICATED THE EASEMENTS AND RIGHTS—OF—WAY FOR ELECTRIC AND GAS DISTRIBUTION AND SERVICE FACILITIES IN THE AREAS DESIGNATED ON THIS PLAT AS "ELECTRIC EASEMENT," "GAS EASEMENT," "ANCHOR EASEMENT," "SERVICE EASEMENT," "OVERHANG EASEMENT," "UTILITY EASEMENT," AND "TRANSFORMER EASEMENT" FOR THE PURPOSE OF INSTALLING, CONSTRUCTING, RECONSTRUCTING, MAINTAINING, REMOVING, INSPECTING, PATROLLING, AND ERECTING POLES, HANGING OR BURYING WRES, CABLES, CONDUITS, PIPELINES, TRANSFORMERS, EACH WITH ITS NECESSARY APPURTENANCES, TOGETHER WITH RIGHT OF INGRESS AND EGRESS OVER GRANTORS ADJACENT LAND, THE RIGHT TO RELOCATE SAID FACILITIES WITHIN SAID EASEMENT AND RIGHT—OF—WAY AREAS AND THE RIGHT TO REMOVE FROM SAID LANDS ALL TREES AND PARTS THEREOF, OR OTHER OBSTRUCTIONS WHICH ENDANGER OR MAY INTERFERE WITH THE EFFICIENCY OF SAID LINES OR APPURTENANCES THERETO. IT IS AGREED AND UNDERSTOOD THAT NO BUILDINGS, CONCRETE SLABS OR WALLS WILL BE PLACED WITHIN SAID EASEMENT AREAS.

2.) ANY CPS MONETARY LOSS RESULTING FROM MODIFICATIONS REQUIRED OF CPS EQUIPMENT, LOCATED WITHIN SAID EASEMENT AREAS.

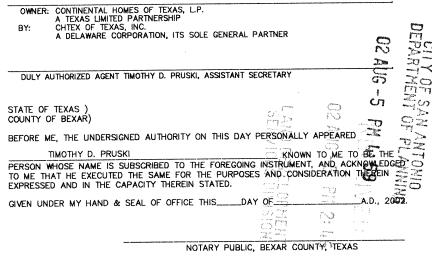
3.) THIS PLAT DOES NOT AMEND, ALTER, RELEASE OR OTHERWISE AFFECT ANY EXISTING ELECTRIC, GAS, WATER, SEWER, DRAINAGE, TELEPHONE, CABLE EASEMENTS OR ANY OTHER EASEMENTS FOR UTILITIES UNLESS THE CHANGES TO SUCH EASEMENTS ARE DESCRIBED BELOW.


4.) CONCRETE DRIVEWAY APPROACHES ARE ALLOWED WITHIN THE FIVE (5) FOOT WIDE

4.) CONCRETE DRIVEWAY APPROACHES ARE ALLOWED WITHIN THE FIVE (5) FOOT WIDE

4.) CONCRETE DRIVEWAY APPROACHES ARE ALLOWED WITHIN THE FIVE OF MIDE GET.TV. FASEMENTS WHEN LOTS ARE SERVED ONLY BY REAR LOT UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES.

5.) ROOF OVERHANGS ARE ALLOWED WITHIN FIVE (5) FOOT WIDE GE.T.TV. EASEMENTS WHEN ONLY UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES ARE PROPOSED OR EXISTING WITHIN THOSE FIVE (5) FOOT WIDE EASEMENTS.



GRAPHIC SCALE

STATE OF TEXAS)
COUNTY OF BEXAR) THE OWNER OF THE LAND SHOWN ON THIS PLAT, IN PERSON OR THROUGH A DULY AUTHORIZED AGENT, DEDICATES TO THE USE OF THE PUBLIC, EXCEPT AREAS IDENTIFIED AS PRIVATE, FOREVER ALL STREETS, ALLEYS, PARKS, WATERCOURSES, DRAINS, EASEMENTS AND PUBLIC PLACES THEREON SHOWN FOR THE PURPOSE AND CONSIDERATION THEREIN EXPRESSED. 1 inch = 100 ft.

SHEET 1 OF 2

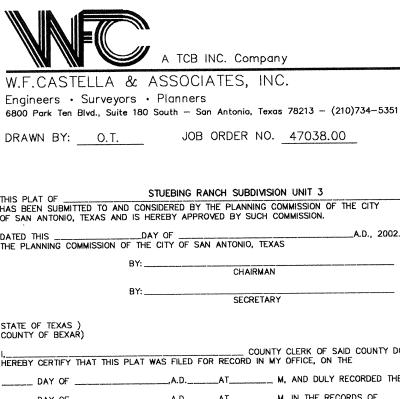
REPLAT & SUBDIVISION PLAT

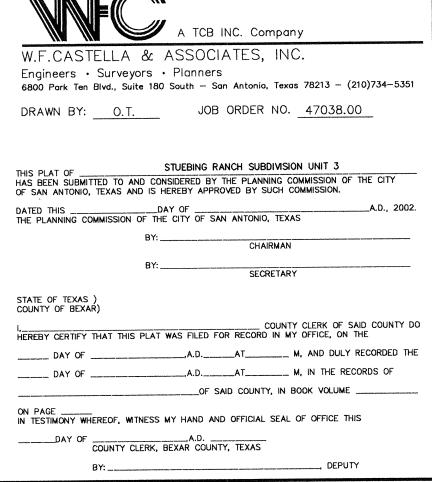
STUEBING RANCH

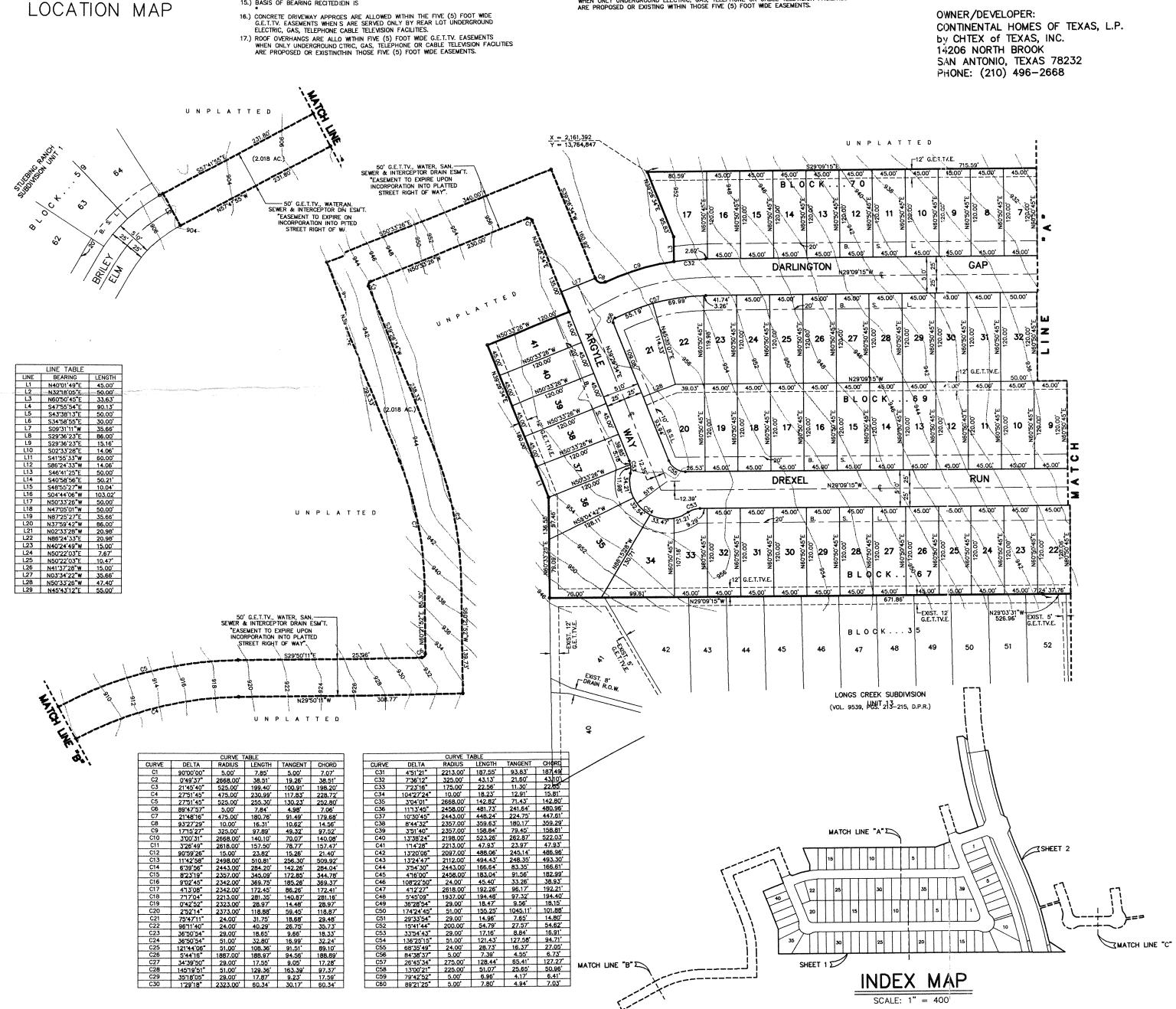
SUBDIVISION UNIT 3

BEING A 24.054 ACRE TRACT OF LAND.

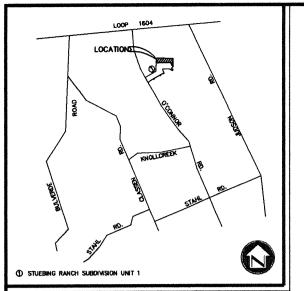
STATE OF TEXAS) COUNTY OF BEXAR)


I HEREBY CERTIFY THAT PROPER ENGINEERING CONSIDERATION HAS BEEN GIVEN THIS PLAT TO THE MATTERS OF STREETS, LOTS AND DRAINAGE LAYOUT. TO THE BEST OF MY KNOWLEDGE THIS PLAT CONFORMS TO ALL REQUIREMENTS OF THE UNIFIED DEVELOPMENT CODE, EXCEPT FOR THOSE VARIANCES THAT MAY BE GRANTED BY THE SAN ANTONIO PLANNING COMMISSION.


REGISTERED PROFESSIONAL ENGINEER


STATE OF TEXAS) COUNTY OF BEXAR)

I HEREBY CERTIFY THAT THE ABOVE PLAT CONFORMS TO THE MINIMUM STANDARD SET FORTH BY THE TEXAS BOARD OF PROFESSIONAL LAND SURVEYING ACCORDING TO AN ACTUAL SURVEY MADE ON THE GROUND BY: EMPLOYEES OF W.F. CASTELLA & ASSOCIATES


REGISTERED PROFESSIONAL LAND SURVEYOR

(m)

LOCATION MAP

N86'30'33"W 50.00' N03'29'27"E 45.57'

N86'30'33"W 13.69' N65"58'59"E 46.97' L6 N65"58"59"E 46.71"

CURVE TABLE

URVE DELTA RADIUS LENGTH TANGENT CHORD

C1 27:30'28" 21.50' 10.32' 5.26' 10.22'

C2 27:34'36" 53.50' 25.75' 13.13' 25.50'

C3 86'47'13" 24.00' 36.35' 22.69' 32.98'

C4 35'46'56" 29.00' 18.11' 9.36' 17.82'

C5 158'21'04" 51.00' 140.95' 266.73' 100.19'

C6 90'00'00" 24.00' 37.70' 24.00' 33.94'

C7 36'08'22" 29.00' 18.29' 9.46' 17.99'

C8 162'16'45" 51.00' 144.45' 327.16' 100.78'

"GENERAL NOTES"

- FLECTRIC & CABLE TELEVISION EASEMENT ------ E.TV.E. TELEPHONE & CABLE TELEVISION EASEMENT -GAS. FLECTRIC. TELEPHONE & CABLE TELEVISION EASEMENT ----- G.E.T.TV.E. LANDSCAPE & SEWER LATERAL EASEMENT-----
- 12.) R.P.R. = OFFICIAL PUBLIC RECORDS OF REAL PROPERTY, BEXAR COUNTY, TEXAS. D.P.R. = DEED AND PLAT RECORDS, BEXAR COUNTY, TEXAS.

 13.) FINISHED FLOOR ELEVATIONS MUST BE A MINIMUM OF 8 INCHES ABOVE FINISHED ADJACENT GRADE.
- 14.) CONTROL MONUMENTS AS SHOWN
 IT IS THE PRACTICE OF W.F. CASTELLA & ASSOC. TO MONUMENT ALL CORNERS
 (IF PRACTICAL) IN THE SUBDISSION UPON COMPLETION OF CONSTRUCTION.
 TYPICAL MONUMENT IS A 1/2" REBAR WITH A "CASTELLA & ASSOC." PLASTIC CAP.
 (*) INDICATES A FOUND 1/2" REBAR WITH A "CASTELLA & ASSOC." PLASTIC CAP.
- 15.) BASIS OF BEARING RECITED HEREIN IS
- *

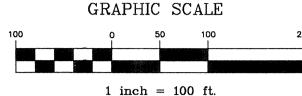
 16.) CONCRETE DRIVEWAY APPROACHES ARE ALLOWED WITHIN THE FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN LOTS ARE SERVED ONLY BY REAR LOT UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES.

 17.) ROOF OVERHANGS ARE ALLOWED WITHIN FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN ONLY UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES ARE PROPOSED OR EXISTING WITHIN THOSE FIVE (5) FOOT WIDE EASEMENTS.

"C.P.S. NOTES AND LEGEND"

- "C.P.S. NOTES AND LEGEND"

 1.) THE CITY OF SAN ANTONIO AS A PART OF ITS ELECTRIC AND GAS SYSTEM (CITY PUBLIC SERVICE BOARD) IS HEREBY DEDICATED THE EASEMENTS AND RIGHTS—OF—WAY FOR ELECTRIC AND GAS DISTRIBUTION AND SERVICE FACILITIES IN THE AREAS DESIGNATED ON THIS PLAT AS "ELECTRIC EASEMENT," "GAS EASEMENT," "ANCHOR EASEMENT," "SERVICE EASEMENT," "OVERHANG EASEMENT," "UTILITY EASEMENT," AND "TRANSFORMER EASEMENT" FOR THE PURPOSE OF INSTALLING, CONSTRUCTING, RECONSTRUCTING, MAINTAINING, REMOVING, INSPECTING, PATROLLING, AND ERECTING POLES, HANGING OR BURYING WRES, CABLES, CONDUITS, PIPELINES, TRANSFORMERS, EACH WITH ITS NECESSARY APPURTENANCES, TOGETHER WITH RIGHT OF INGRESS AND EGRESS OVER GRANTORS ADJACENT LAND, THE RIGHT TO RELOCATE SAID FACILITIES WITHIN SAID EASEMENT AND RIGHT—OF—WAY AREAS AND THE RIGHT TO REMOVE FROM SAID LANDS ALL TREES AND PARTS THEREOF, OR OTHER OBSTRUCTIONS WHICH ENDANGER OR MAY INTERFERE WITH THE EFFICIENCY OF SAID LINES OR APPURTENANCES THERETO. IT IS AGREED AND UNDERSTOOD THAT NO BUILDINGS, CONCRETE SLABS OR WALLS WILL BE PLACED WITHIN SAID EASEMENT, DUE TO GRADE CHANGES OR GROUND ELEVATION ALTERATION SHALL BE CHARGED TO THE PERSON OR PERSONS DEEMED RESPONSIBLE FOR SAID GRADE CHANGES OR GROUND ELEVATION ALTERATION SHALL BE CHARGED TO THE PERSON OR PERSONS DEEMED RESPONSIBLE FOR SAID GRADE CHANGES OR GROUND ELEVATION ALTERATION.


 3.) THIS PLAT DOES NOT AMEND, ALTER, RELEASE OR OTHERWISE AFFECT ANY EXISTING ELECTRIC, GAS, WATER, SEWER, DRAINAGE, TELEPHONE, CABLE EASEMENTS OR ANY OTHER EASEMENTS FOR UTILITIES UNLESS THE CHANGES TO SUCH EASEMENTS ARE DESCRIBED BELOW.

- OTHER EASEMENTS FOR UTILITIES UNLESS THE CHANGES TO SUCH EASEMENTS ARE DESCRIBED BELOW.

 4.) CONCRETE DRIVEWAY APPROACHES ARE ALLOWED WITHIN THE FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN LOTS ARE SERVED ONLY BY REAR LOT UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEMISION FACILITIES.

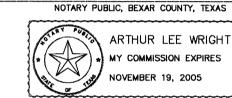
 5.) ROOF OVERHANGS ARE ALLOWED WITHIN FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN ONLY UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES ARE PROPOSED OR EXISTING WITHIN THOSE FIVE (5) FOOT WIDE EASEMENTS.

SUBDIVISION PLAT

STUEBING RANCH SUBDIVISION UNIT 2

BEING 8.097 ACRES OF LAND OUT OF N.C.B. 17726, SAN ANTONIO, BEXAR COUNTY, TEXAS.

STATE OF TEXAS) COUNTY OF BEXAR)


THE OWNER OF THE LAND SHOWN ON THIS PLAT IN PERSON OR THROUGH A DULLY AUTHORIZED AGENT, DEDICATES TO THE USE OF THE PUBLIC, EXCEPT AREAS IDENTIFIED AS PRIVATE, FOREVER ALL STREETS, ALLEYS, PARKS, WATERCOURSES, DRAINS, EASEMENTS AND PUBLIC PLACES THEREON SHOWN FOR THE PURPOSE AND CONSIDERATION THEREIN EXPRESSED

2 OWNER: CONTINENTAL HOMES OF TEXAS, L.P.
A TEXAS LIMITED PARTINERSHIP
BY: CHTEX OF TEXAS, INC.
A DELAWARE CORPORATION, ITS SOLE GENERAL PARTNER DULY AUTHORIZED AGENT TIMOTHY D. PRUSKI, ASSISTANT SECRETARY

BEFORE ME, THE UNDERSIGNED AUTHORITY ON THIS DAY PERSONALLY APPEARED

TIMOTHY D. PRUSKI KNOWN TO ME TO BE THE PERSON WHOSE NAME IS SUBSCRIBED TO THE FOREGOING INSTRUMENT, AND ACKNOWLEDGED TO ME THAT HE EXECUTED THE SAME FOR THE PURPOSES AND CONSIDERATION THEREIN EXPRESSED AND. THE PARTY THEREIN TIMOTHY D. PRUSKI EXPRESSED AND IN THE CAPACITY THEREIN STATED.

GIVEN UNDER MY HAND & SEAL OF OFFICE THIS____DAY OF_____

STATE OF TEXAS) COUNTY OF BEXAR)

I HEREBY CERTIFY THAT PROPER ENGINEERING CONSIDERATION HAS BEEN GIVEN THIS PLAT TO THE MATTERS OF STREETS, LOTS AND DRAINAGE LAYOUT. TO THE BEST OF MY KNOWLEDGE THIS PLAT CONFORMS TO ALL REQUIREMENTS OF THE UNIFIED DEVELOPMENT CODE, EXCEPT FOR THOSE VARIANCES THAT MAY BE GRANTED

REGISTERED PROFESSIONAL ENGINEER SWORN TO & SUBSCRIBED BEFORE ME THIS THE ___ DAY OF ___

STATE OF TEXAS) COUNTY OF BEXAR)

I HEREBY CERTIFY THAT THE ABOVE PLAT CONFORMS TO THE MINIMUM STANDARD SET FORTH BY THE TEXAS BOARD OF PROFESSIONAL LAND SURVEYING ACCORDING TO AN ACTUAL SURVEY MADE ON THE GROUND BY: EMPLOYEES OF W.F. CASTELLA & ASSOCIATES UNDER MY SUPERVISION.

REGISTERED PROFESSIONAL LAND SURVEYOR

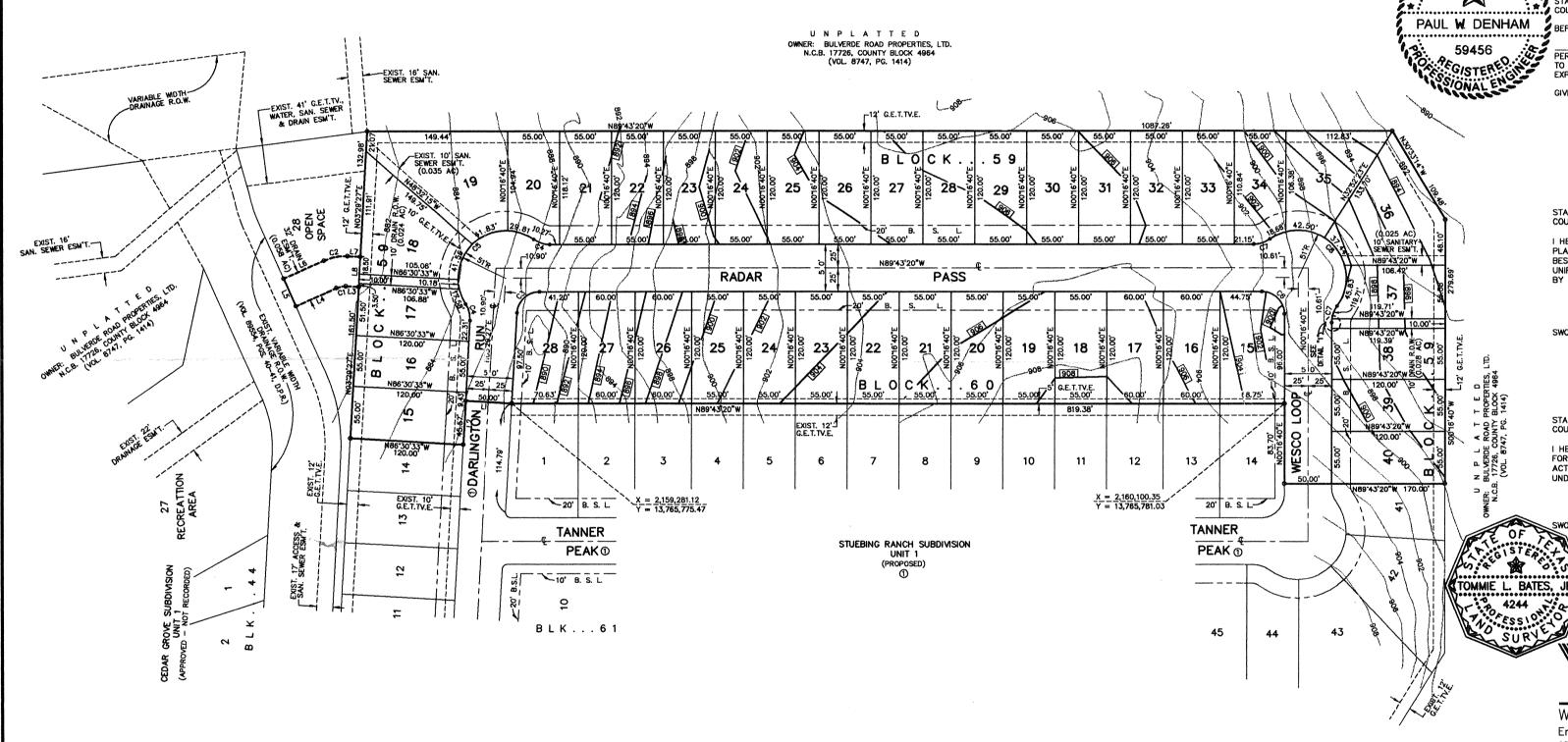
SWORN TO & SUBSCRIBED BEFORE ME THIS THE ____ DAY OF_____

A TCB INC. Company

W.F.CASTELLA & ASSOCIATES, INC. Engineers • Surveyors • Planners 6800 Park Ten Blvd., Suite 180 South - San Antonio, Texas 78213 - (210)734-5351

DRAWN BY: O.T. JOB ORDER NO. 47016.00

STUEBING RANCH SUBDIVISION UNIT 2 THIS PLAT OF STUEBING RANCH SUBUIVISION UNIT 2
HAS BEEN SUBMITTED TO AND CONSIDERED BY THE PLANNING COMMISSION OF THE CITY
OF SAN ANTONIO, TEXAS AND IS HEREBY APPROVED BY SUCH COMMISSION. THE PLANNING COMMISSION OF THE CITY OF SAN ANTONIO, TEXAS SECRETARY


STATE OF TEXAS) COUNTY OF BEXAR)

I,_____ COUNTY CLERK OF SAID COUNTY DO HEREBY CERTIFY THAT THIS PLAT WAS FILED FOR RECORD IN MY OFFICE, ON THE ____,A.D.___AT_____ M, AND DULY RECORDED THE

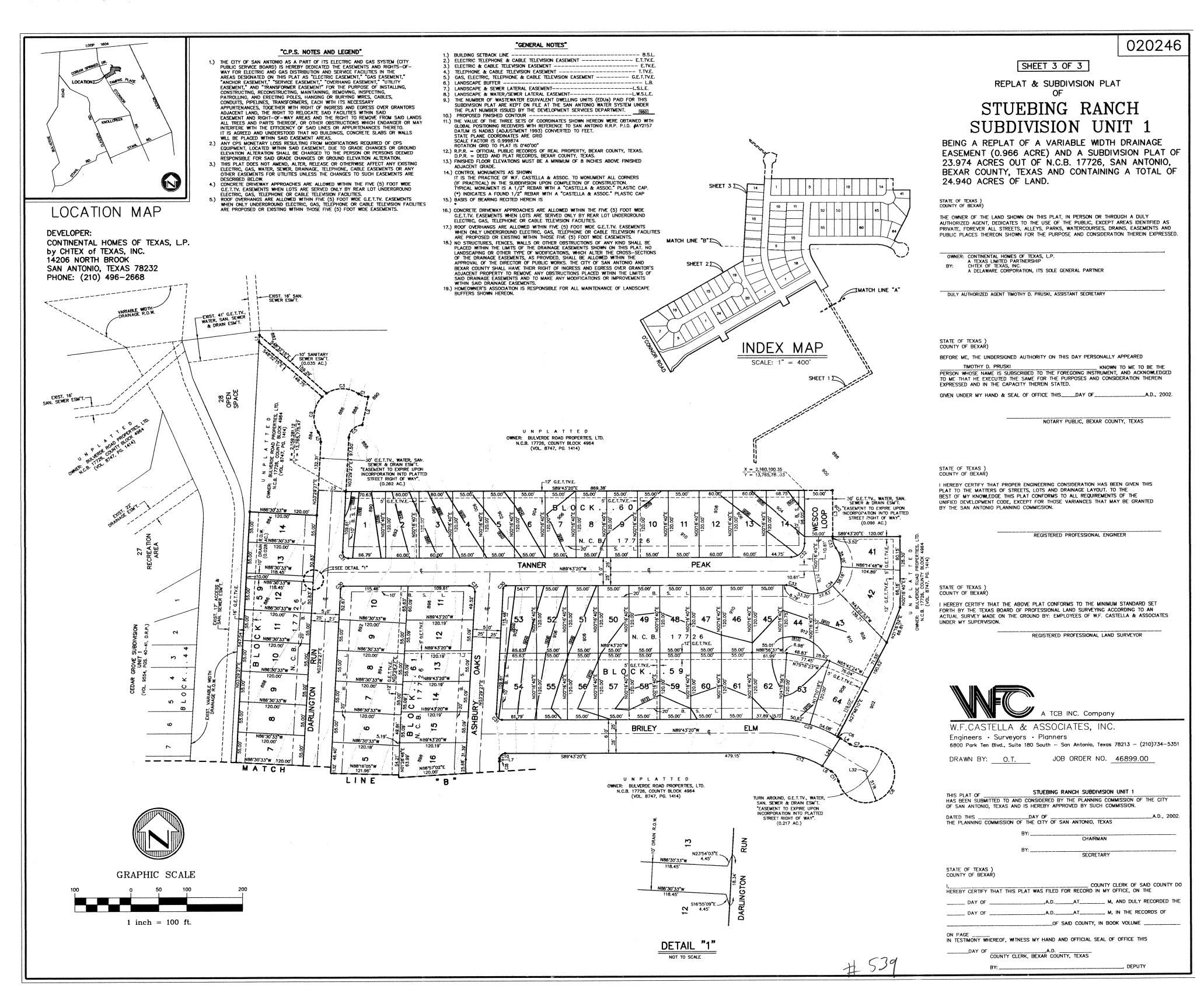
_A.D.___AT_____ M, IN THE RECORDS OF __OF SAID COUNTY, IN BOOK VOLUME .

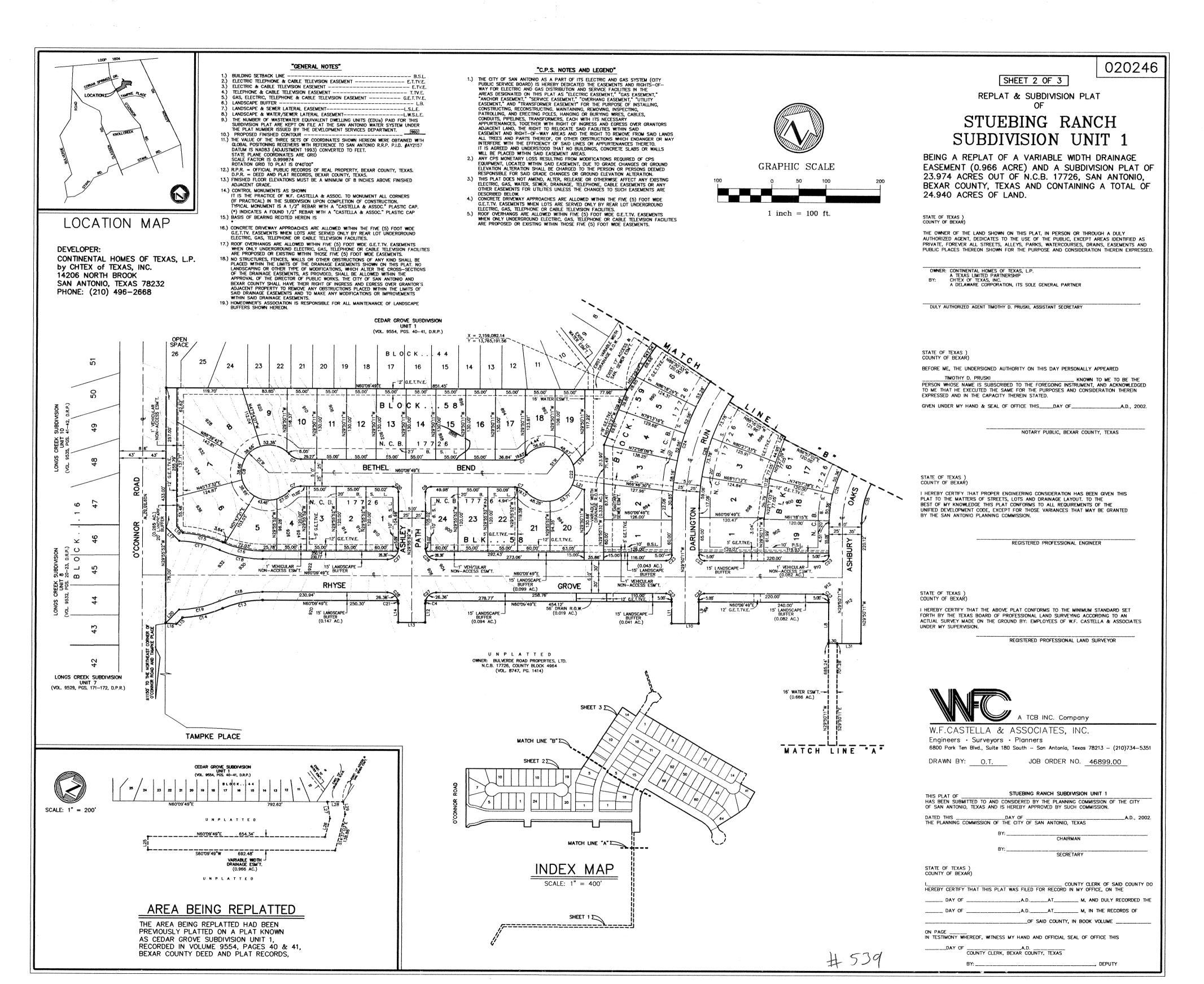
ON PAGE ________ IN TESTIMONY WHEREOF, WITNESS MY HAND AND OFFICIAL SEAL OF OFFICE THIS _____DAY OF ______,A.D. _____,A.D. _____,COUNTY CLERK, BEXAR COUNTY, TEXAS

DEPUTY

DEVELOPER:

CONTINENTAL HOMES OF TEXAS, L.P.


by CHTEX of TEXAS, INC. 14206 NORTH BROOK


PHONE: (210) 496-2668

SAN ANTONIO, TEXAS 78232

LOT 36

LOT 37

LOCATION MAP

DEVELOPER: CONTINENTAL HOMES OF TEXAS, L.P. by CHTEX of TEXAS, INC. 14206 NORTH BROOK SAN ANTONIO, TEXAS 78232 PHONE: (210) 496-2668

LINE TABLE

"GENERAL NOTES"

- 12.) R.P.R. = OFFICIAL PUBLIC RECORDS OF REAL PROPERTY, BEXAR COUNTY, TEXAS.
 D.P.R. = DEED AND PLAT RECORDS, BEXAR COUNTY, TEXAS.
 13.) FINISHED FLOOR ELEVATIONS MUST BE A MINIMUM OF 8 INCHES ABOVE FINISHED ADJACENT GRADE.
- ADJACENT GRADE.

 14.) CONTROL MONUMENTS AS SHOWN

 1T IS THE PRACTICE OF W.F. CASTELLA & ASSOC. TO MONUMENT ALL CORNERS

 (IF PRACTICAL) IN THE SUBDIVISION UPON COMPLETION OF CONSTRUCTION.

 TYPICAL MONUMENT IS A 1/2" REBAR WITH A "CASTELLA & ASSOC." PLASTIC CAP.

 (*) INDICATES A FOUND 1/2" REBAR WITH A "CASTELLA & ASSOC." PLASTIC CAP.
- 16.) CONCRETE DRIVEWAY APPROACHES ARE ALLOWED WITHIN THE FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN LOTS ARE SERVED ONLY BY REAR LOT UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES.
- 17.) ROOF OVERHANGS ARE ALLOWED WITHIN FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN ONLY UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES ARE PROPOSED OR EXISTING WITHIN THOSE FIVE (5) FOOT WIDE EASEMENTS.
- 18.) NO STRUCTURES, FENCES, WALLS OR OTHER OBSTRUCTIONS OF ANY KIND SHALL BE PLACED WITHIN THE LIMITS OF THE DRAINAGE EASEMENTS SHOWN ON THIS PLAT. NO LANDSCAPING OR OTHER TYPE OF MODIFICATIONS, WHICH ALTER THE CROSS—SECTIONS OF THE DRAINAGE EASEMENTS, AS PROVIDED, SHALL BE ALLOWED WITHIN THE APPROVAL OF THE DIRECTOR OF PUBLIC WORKS. THE CITY OF SAN ANTONIO AND BEXAR COUNTY SHALL HAVE THEIR RIGHT OF INGRESS AND EGRESS OVER GRANTOR'S ADJACENT PROPERTY TO REMOVE ANY OBSTRUCTIONS PLACED WITHIN THE LIMITS OF SAID DRAINAGE EASEMENTS AND TO MAKE ANY MODIFICATIONS OR IMPROVEMENTS WITHIN SAID DRAINAGE EASEMENTS.

 19.) HOMEOWHER'S ASSOCIATION IS RESPONSIBLE FOR ALL MAINTENANCE OF LANDSCAPE DIFFERS SLOWN HEREON.

"C.P.S. NOTES AND LEGEND"

- T.P.S. NOTES AND LEGEND"

 1.) THE CITY OF SAN ANTONIO AS A PART OF ITS ELECTRIC AND GAS SYSTEM (CITY PUBLIC SERVICE BOARD) IS HEREBY DEDICATED THE EASEMENTS AND RICHTS—OF—WAY FOR ELECTRIC AND GAS DISTRIBUTION AND SERVICE FACILITIES IN THE AREAS DESIGNATED ON THIS PLAT AS "ELECTRIC EASEMENT," "GAS EASEMENT," "ANCHOR EASEMENT," "SERVICE EASEMENT," "OVERHANG EASEMENT," "UTILITY EASEMENT," AND "TRANSFORMER EASEMENT" FOR THE PURPOSE OF INSTALLING, CONSTRUCTING, RECONSTRUCTING, MAINTAINING, REMOVING, INSPECTING, PATROLLING, AND ERECTING POLES, HANGING OR BURYING WIRES, CABLES, CONDUITS, PIPELINES, TRANSFORMERS, EACH WITH ITS NECESSARY APPURTENANCES, TOGETHER WITH RIGHT OF INGRESS AND ECRESS OVER GRANTORS ADJACENT LAND, THE RIGHT TO RELOCATE SAID FACILITIES WITHIN SAID EASEMENT AND RIGHT—OF—WAY AREAS AND THE RIGHT TO REMOVE FROM SAID LANDS ALL TREES AND PARTS THEREOF, OR OTHER OBSTRUCTIONS WHICH ENDANGER OR MAY INTERFERE WITH THE EFFICIENCY OF SAID LINES OR APPURTENANCES THERETO. IT IS AGREED AND UNDERSTOOD THAT NO BUILDINGS, CONCRETE SLABS OR WALLS WILL BE PLACED WITHIN SAID EASEMENT AREAS.

 2.) ANY CPS MONETARY LOSS RESULTING FROM MODIFICATIONS REQUIRED OF CPS
- WILL BE PLACED WITHIN SAID EASEMENT AREAS.

 2.) ANY CPS MONETARY LOSS RESULTING FROM MODIFICATIONS REQUIRED OF CPS EQUIPMENT, LOCATED WITHIN SAID EASEMENT, DUE TO GRADE CHANGES OR GROUND ELEVATION ALTERATION SHALL BE CHARGED TO THE PERSON OR PERSONS DEEMED RESPONSIBLE FOR SAID GRADE CHANGES OR GROUND ELEVATION ALTERATION.
- 3.) THIS PLAT DOES NOT AMEND, ALTER, RELEASE OR OTHERWISE AFFECT ANY EXISTING ELECTRIC, GAS, WATER, SEWER, DRAINAGE, TELEPHONE, CABLE EASEMENTS OR ANY OTHER EASEMENTS FOR UTILITIES UNLESS THE CHANGES TO SUCH EASEMENTS ARE
- OTHER EASEMENTS FOR UTILITIES UNLESS THE CHANGES TO SUCH EASEMENTS ARE DESCRIBED BELOW.

 4.) CONCRETE DRIVEWAY APPROACHES ARE ALLOWED WITHIN THE FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN LOTS ARE SERVED ONLY BY REAR LOT UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES.

 5.) ROOF OVERHANGS ARE ALLOWED WITHIN FIVE (5) FOOT WIDE G.E.T.TV. EASEMENTS WHEN ONLY UNDERGROUND ELECTRIC, GAS, TELEPHONE OR CABLE TELEVISION FACILITIES ARE PROPOSED OR EXISTING WITHIN THOSE FIVE (5) FOOT WIDE EASEMENTS.

GRAPHIC SCALE

CITY OF SAN ANTONIO DEPARTMENT OF PLANNING -Z 2 OZ DEC

MATCH LINE "A"

16' WATER ESM'1 (0.666 AC.)

UNPLATTED

OWNER: BULVERDE ROAD PROPERTIES, LTD.

1 inch = 100 ft.

OWNER: CONTINENTAL HOMES OF TEXAS, L.P.
A TEXAS LIMITED PARTINERSHIP
BY: CHTEX OF TEXAS, INC.
A DELAWARE CORPORATION, ITS SOLE GENERAL PARTNER DULY AUTHORIZED AGENT TIMOTHY D. PRUSKI, ASSISTANT SECRETARY

STATE OF TEXAS) COUNTY OF BEXAR)

24.940 ACRES OF LAND.

BEFORE ME, THE UNDERSIGNED AUTHORITY ON THIS DAY PERSONALLY APPEARED

PERSON WHOSE NAME IS SUBSCRIBED TO THE FOREGOING INSTRUMENT, AND ACKNOWLEDGED TO ME THAT HE EXECUTED THE SAME FOR THE PURPOSES AND CONSIDERATION THEREIN EXPRESSED AND IN THE CAPACITY THEREIN STATED.

GIVEN UNDER MY HAND & SEAL OF OFFICE THIS____DAY OF__

SHEET 1 OF 3

REPLAT & SUBDIVISION PLAT

STUEBING RANCH

SUBDIVISION UNIT 1

BEING A REPLAT OF A VARIABLE WIDTH DRAINAGE

EASEMENT (0.966 ACRE) AND A SUBDIVISION PLAT OF

23,974 ACRES OUT OF N.C.B. 17726, SAN ANTONIO,

BEXAR COUNTY, TEXAS AND CONTAINING A TOTAL OF

THE OWNER OF THE LAND SHOWN ON THIS PLAT, IN PERSON OR THROUGH A DULY AUTHORIZED AGENT, DEDICATES TO THE USE OF THE PUBLIC, EXCEPT AREAS IDENTIFIED AS PRIVATE, FOREVER ALL STREETS, ALLEYS, PARKS, WATERCOURSES, DRAINS, EASEMENTS AND PUBLIC PLACES THEREON SHOWN FOR THE PURPOSE AND CONSIDERATION THEREIN EXPRESSED.

NOTARY PUBLIC, BEXAR COUNTY, TEXAS

I HEREBY CERTIFY THAT PROPER ENGINEERING CONSIDERATION HAS BEEN GIVEN THIS PLAT TO THE MATTERS OF STREETS, LOTS AND DRAINAGE LAYOUT. TO THE BEST OF MY KNOWLEDGE THIS PLAT CONFORMS TO ALL REQUIREMENTS OF THE UNIFIED DEVELOPMENT CODE, EXCEPT FOR THOSE VARIANCES THAT MAY BE GRANTED

REGISTERED PROFESSIONAL ENGINEER

STATE OF TEXAS)
COUNTY OF BEXAR

I HEREBY CERTIFY THAT THE ABOVE PLAT CONFORMS TO THE MINIMUM STANDARD SET FORTH BY THE TEXAS BOARD OF PROFESSIONAL LAND SURVEYING ACCORDING TO AN ACTUAL SURVEY MADE ON THE GROUND BY: EMPLOYEES OF W.F. CASTELLA & ASSOCIATES UNDER MY SUPERVISION.

REGISTERED PROFESSIONAL LAND SURVEYOR

TCB INC. Company

W.F.CASTELLA & ASSOCIATES, INC. Engineers · Surveyors · Planners 6800 Park Ten Blvd., Suite 180 South - San Antonio, Texas 78213 - (210)734-5351

DRAWN BY: O.T.

JOB ORDER NO. 46899.00

STUEBING RANCH SUBDIVISION UNIT 1 HAS BEEN SUBMITTED TO AND CONSIDERED BY THE PLANNING COMMISSION OF THE CITY OF SAN ANTONIO, TEXAS AND IS HEREBY APPROVED BY SUCH COMMISSION. DATED THIS ______DAY OF THE PLANNING COMMISSION OF THE CITY OF SAN ANTONIO, TEXAS

STATE OF TEXAS)
COUNTY OF BEXAR)

COUNTY CLERK OF SAID COUNTY DO HEREBY CERTIFY THAT THIS PLAT WAS FILED FOR RECORD IN MY OFFICE, ON THE

_OF SAID COUNTY, IN BOOK VOLUME

ON PAGE ________ IN TESTIMONY WHEREOF, WITNESS MY HAND AND OFFICIAL SEAL OF OFFICE THIS

COUNTY CLERK, BEXAR COUNTY, TEXAS DEPUTY

LINE TABLE

LINE BEARING LENGTH

L1 N03'29'27"E 12.69'

L2 N12'25'02"E 51.14'

L3 N00'16'40"E 83.70'

L4 S57'41'55"E 20.77'

L5 N67'33'53"W 17.28'

L6 S57'41'55"E 18.95'

L7 N03'29'27"E 5.27'

L8 N29'50'11"W 75.00'

L9 N29'50'11"W 40.00'

L10 N60'09'49"E 50.00'

L11 N29'55'52"W 34.88'

L13 N60'04'08"E 50.00'

L14 N29'55'52"W 35.03'

L15 S15'02'35"W 16.20'

L16 S63'30'58"W 20.04'

L17 N74'48'59"W 16.27'

L18 N74'48'59"W 35.43'

L18 N74'48'59"W 16.27'

L22 N01'28'48"E 4.59'

L20 N15'02'35"E 35.37'

L21 S83'08'47"W 24.10'

L22 N01'28'48"E 60.00'

L25 N29'55'52"W 50.00'

L26 N15'02'35"B 50.00'

L27 N39'25'27"E 66.00'

L28 N60'09'49"E 50.00'

L26 N14'37'03"W 70.58'

L27 N39'25'27"W 62.77'

L28 N60'09'49"E 16.00'

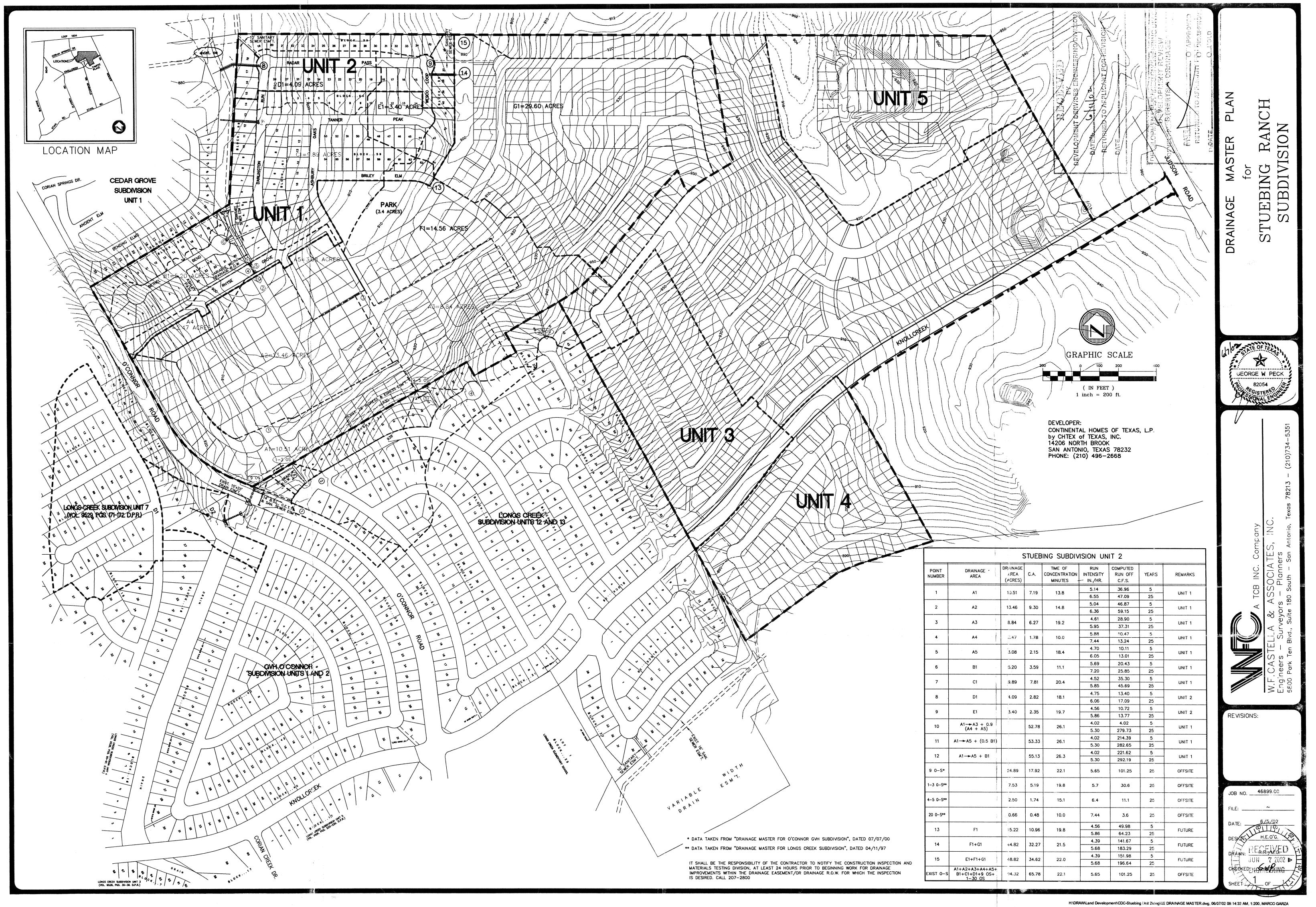
L31 N50'09'49"E 16.00'

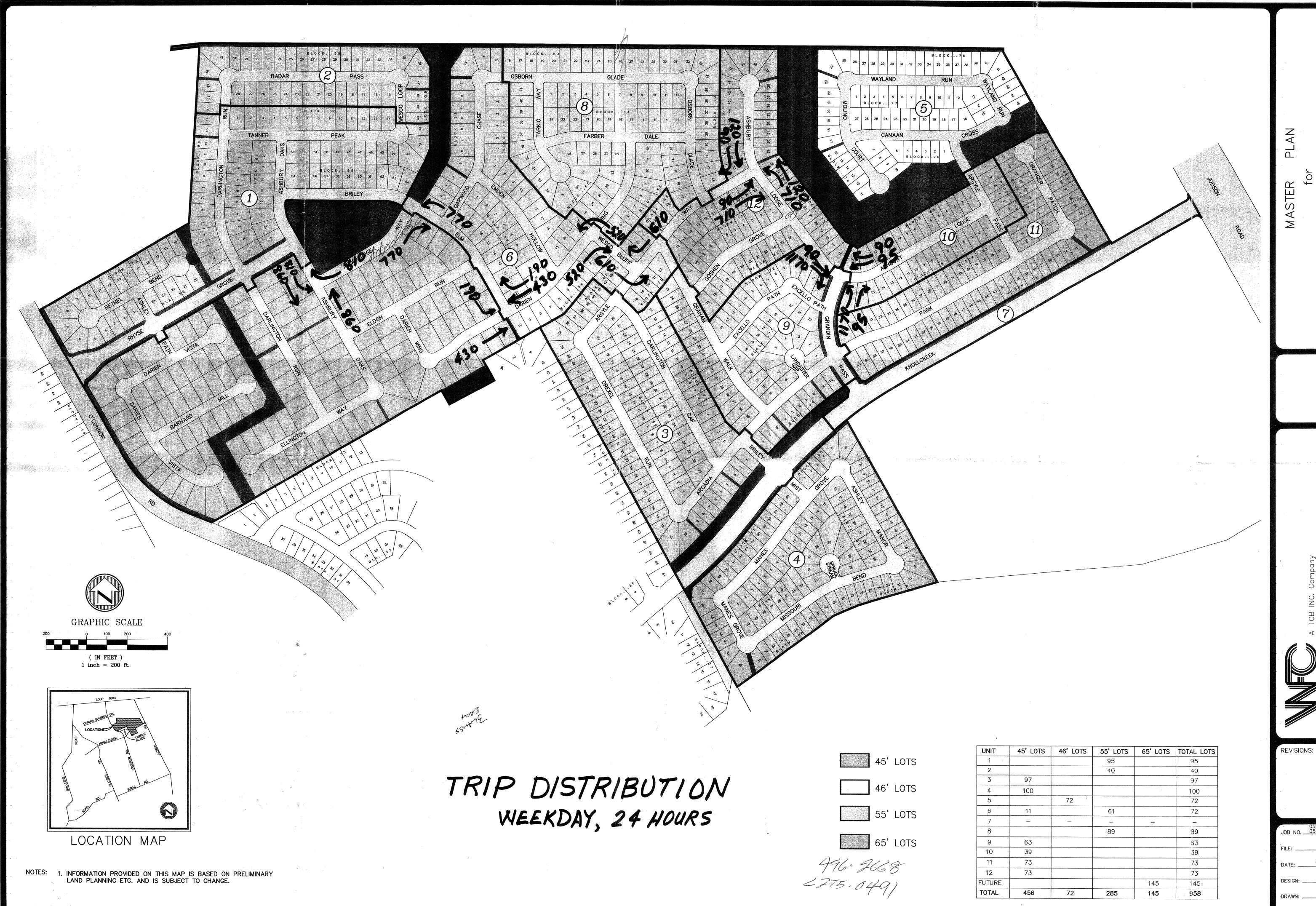
L31 N50'09'49"E 16.00'

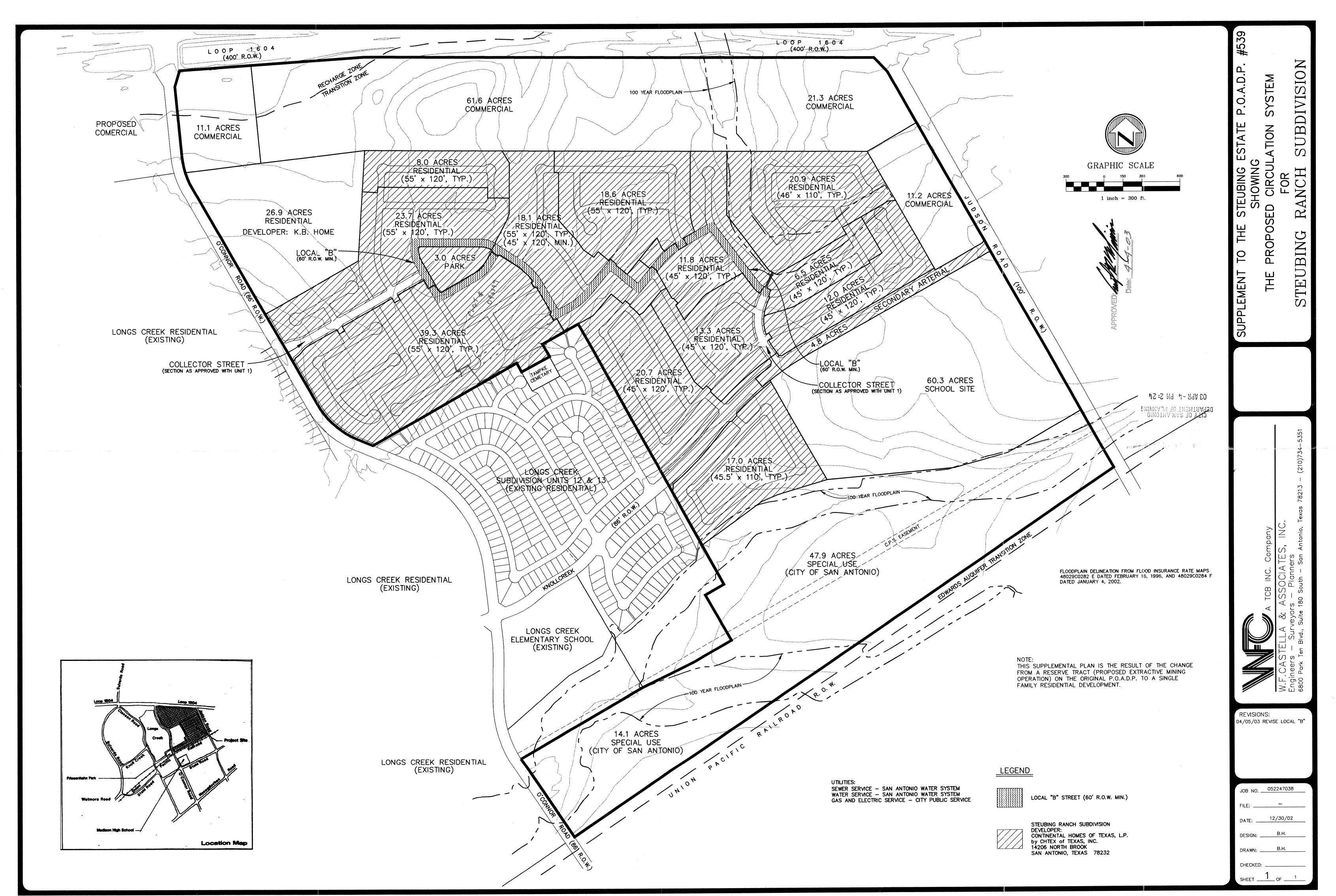
L31 N60'09'49"E 16.00'

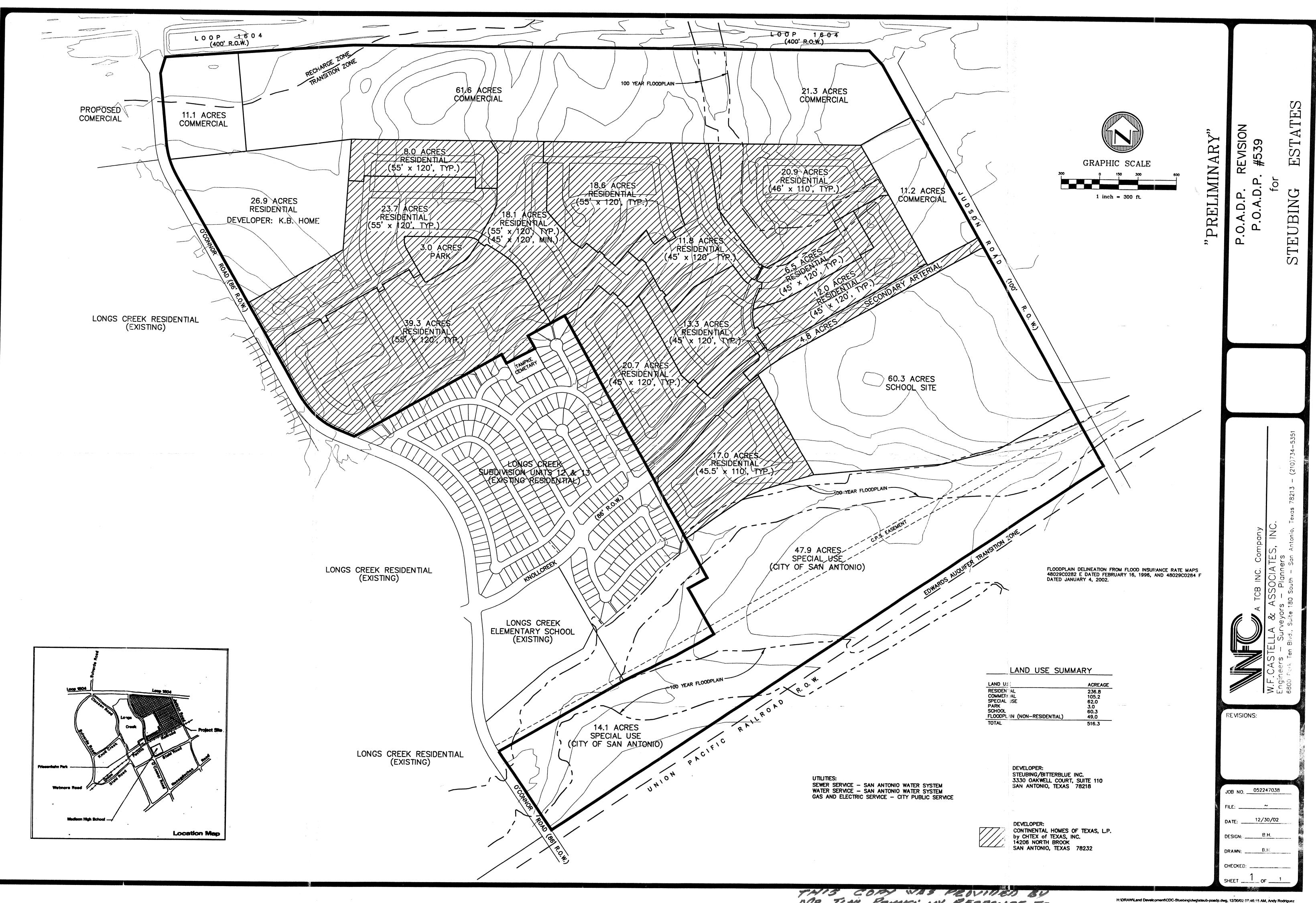
L31 N50'09'49"E 16.00'

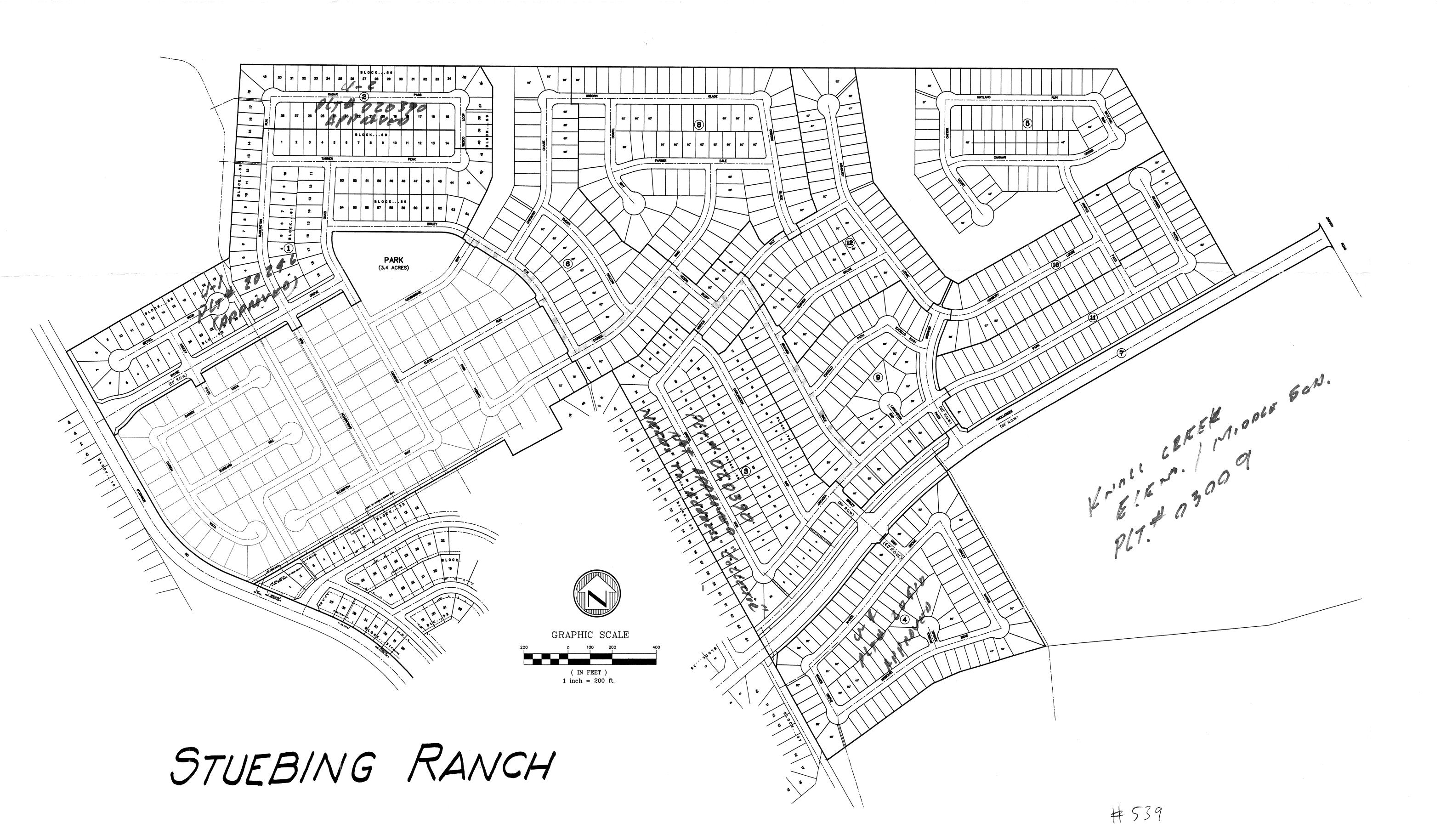
L31 N50'09'49"E 16.00'


L31 N50'09'49"E 16.00'


L31 N50'09'49"E 16.00' L31 N60°09'49"E 44.00' L32 N32"8'05"E 6.00'


		CURVE T	ABLE		
CURVE	DELTA	RADIUS	LENGTH	TANGENT	CHORD
C1	35'46'55"	29.00'	18.11'	9.36'	17.82
C2	77"52'19"	51.00'	69.32	41.20'	64.10
C3	69"03'30"	51.00'	61.47'	35.09'	57.82
C4	14'34'20"	20.00'	5.09'	2.56'	5.07
C5	86'47'15"	24.00'	36.35'	22.69'	32.98
C6	1'21'33"	225.00'	5.34'	2.67°	5.34
C7	41"24"35"	29.00'	20.96	10.96'	20.51
C8	264'56'27"	51.00'	235.83	55.71'	75.24
C9	90'05'41"	10.00'	15.72'	10.02'	14.15
C10	86'47'13"	10.00'	15.15'	9.45'	13.74
C11	43'31'52"	29.00'	22.03	11.58'	21.51
C12	31"53"56"	165.00'	91.86'	47.16'	90.68
C13	23'26'12"	185.00'	75.67	38.37	75.15
C14	20"21'45"	215.00'	76.41'	38.61'	76.01
C15	20"25'26"	215.00'	76.64	38.73'	76.23
C16	23'26'12"	185.00'	75.67	38.37	75.15
C17	22'02'54"	200.00'	76.96'	38.96'	76.49
C18	23'26'12"	200.00	81.81'	41.48'	81.24
C19	21'59'19"	200.00	76.75'	38.86'	76.28
C20	89'54'19"	10.00'	15.69'	9.98'	14.13
C21	14"22"58"	20.00'	5.02'	2.52'	5.01
C22	275*05'31"	51.00'	244.86	46.66	68.85
C23	90'00'00"	10.00'	15.71	10.00'	14.14
C24	3319'38"	425.00'	247.21	127.21'	243.74
C25	33"9'46"	375.00'	218.14	112.25'	215.08
C26	33"20"06"	225.00	130.91	67.36	129.07
C27	90°05'41"	20.00*	31.45'	20.03	28.31
C28	89*54'19"	20.00'	31.38'	19.97'	28.26
C29	30'39'52"	225.00'	120.42	61.69'	118.99
C30	86'47'13"	5.00'	7.57	4.73'	6.87
C31	9312'47"	10.00'	16.27	10.58'	14.53
C32	90,00,00	24.00'	37.70	24.00'	33.94
C33	36°08'23"	29.00'	18.29'	9.46'	17.99
C34	16276'45"	51.00'	144.45	327.16'	100.78
C35	3319'38"	165.00'	95.98'	49.39'	94.63


N.C.B. 17726, COUNTY BLOCK 4964 (VOL. 8747, PG. 1414) W"00'er082 UNPLATTED OWNER: BULVERDE ROAD PROPERTIES, LTD. N.C.B. 17726, COUNTY BLOCK 4964 (VOL. 8747, PG. 1414) EXIST. 28' INGRESS & EGRESS ESM'T. MATCH LINE "B" -EXIST. 14' G.E.T.TV.E. SHEET 25 5 N. C. B. 17726 LONGS CREEK SUBDIVISION UNIT 12 (VOL. 9537, PGS. 79-81, D.P.R.) MATCH LINE "A" INDEX MAP SCALE: 1" = 400' SHEET 1



TAIS COPY WAS PROVIDED BY
INDE. TIAN PRISEY IN RESPONSE TO
AND COMMENTS (2-11-03) (NO CHANGES")

Jul-23-02 14:29;

Denton Communities ...developing a difference.

MEMORANDUM

TO:

Mr. Chester Slimp

Architect, City Public Works, COSA

Via Facsimile 207-4418

FROM:

Laddie Denton

DATE:

July 23, 2002

RE:

Longhorn POADP, et al.

Can you please send a copy of the Northeast Service Center Plat to Mike Herrera? I need this to get my POADP reinstated. Also, I am getting the golf course grading plan so we can talk to you and Rocky; we're gonna attempt the TIF with Carpenter's blessing.

Thank you for routing the plat. Please call me if that's a problem.

LAD:ss

Cc:

Mr. Mike Herrera (Via Facsimile 207-4441)

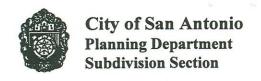
Mr. Allen Walsh (Via Facsimile 208-1881)

Including this cover sheet, this fax is comprised of

CONFIDENTIALITY NOTICE

THE PAGES OF THIS FAX TRANSMISSION CONTAIN CONFIDENTIAL INFORMATION INTENDED ONLY FOR USE OF THE INDIVIDUAL OR ENTITY NAMED. IF YOU ARE NOT THE INTENDED RECIPIENT, ANY REVIEW, DISTRIBUTION. DISSEMINATION, COPYING OR OTHER USE OF THIS TRANSMISSION IS PROHIBITED. IF YOU HAVE RECEIVED THIS TRANSMISSION IN ERROR, PLEASE NOTIFY US AT ONCE AT THE NUMBER SHOWN BELOW SO WE CAN ARRANGE TO RETRIEVE THE TRANSMISSION AT OUR COST.

Land Development Services Division, City of San Antonio, Texas, 1995


PRELIMINARY OVERALL AREA DEVELOPMENT PLAN (POADP) APPLICATION

Date Submitted: November 26,1996			
Name of POADP: STEURING ESTAT	E (previous #	496)	_
Owner/Agent: STELIBING POERNER	LTD PARTHER GUIP	Phone: 824-78	56
Address: 3330 EAKWELL CT. ST	E. 110	_Zip code:_78218	·
FLANHER Engineer/Surveyor: DIVIE WATKING III *	ASSOCIATES	_Phone: <u>824 - 783</u>	<u> </u>
Address: 3330 CAKNELL C.T.	TE. 110	_Zip code: 78218	
Existing zoning: LA	Proposed z	oning: <u>R-1,R-3,B-2</u> ,	B-3R
Texas State Plane Coordinates: X 21891	00 Y	643300	~
(at major street entrance/main entrance) Plat is over/within/includes: San Antonio City Edwards Aquifer I		Yes 🖭	No 🗆
Land Area Being Platted:	Lots	Acres	
Single-Family (SF)	±500	125.9	_,
Non-Single Family (NSF)	±6	292.0	_
Commercial & other	± 5	98.4	_
TOTAL =	<u>511</u>	516.3	

Print Name: DIHE WATKING	Signature	
Date: November 210, 1990	Tel: 824-7836	Fax: 824 -0128

Last block at bottom of page is for the person actually submitting the application. Anyone may submit an application. However, this is the person staff wil contact regarding this application for clarification or additional information. Therefore, this should be your POC (point of contact).

^{*} Note: This application must be completed fully, and typed or printed legibly, for acceptance.

REQUEST FOR REVIEW

TO:	Date 2-3-96
FROM: Ell	
ITEM NAME: Steubing	FILE #
RE: POADP	
Commission or Director. Ple Department of Planning, La responses shall be returned a below. Response time will co	s been submitted to you for a recommendation to the Planning ease review the item and forward your recommendation to the and Development Services Division, Subdivision Section. All as soon as possible, but generally no later than the date shown ommence from the date of receipt of this request or receipt of all as for this review. "Days" represent work days.
Please Return By:	, 19
☐ Proposed plat-30 days ☐ Plat deferral-30 days ☐	☐ Variance-15 days ☐ POADP's-10 days Plan / legal doc-15 days ☐ Other-15 days
I recommend approv	val I <u>do not</u> recommend approval
I recommend approv	
On_	
On_	, I notified, the engineer/

City of San Antonio New Vested Rights Permit APPLICATION

DEPARTMENT OF PLANNING

03 JAN 17 PM 3: 32

Permit File: # 03-01-022

Date: 1-17-03

- 1. All applicable information on application must be legibly printed or typed for processing. <u>If application is completed on behalf of the property owner please attach nower of attorney or letter of agent.</u>
- 2. Please complete this application and attach 2 maps of the property and 2 sets of all supporting documents.

	Note: All Applications must have a Site Map showing the Area Boundary (Attached).
O _W	ner/Agent: Continental Homes of TELAS, L.P. Phone: 210-222-1500 Fax: 210-2229100
Ado	dress: III SLEDAO, SUITE III, SAN ANDAO, DE ZIP code: 78205
Eng	gincer/Surveyor: W.F. Castella + ASSOC. Phone: 210-334-5351 Fax: 210-334-5363
Αd	dress: USOD Park TEN Olvo, # 100 South Son Antonio N Zip code: 78213
	Name of Project: Steubing Ranch
2.	Site location or address of Project: appoyimately 152.6 acres of property located South of Loop 1624 between O'Connor Rd & Justion Rd.
3.	Council District D ETJ Over Edward's Aquifer Recharge? (Yyes () no
4.	What is the specific purpose of this Project and the expected use(s) to be created by this Project (type of development, number of buildings, type of building(s), specific use(s) of those buildings, etc.)? Please be aware that the city must understand exactly what this Project is expected to accomplish in order to evaluate this application.
	SINGLE FAMILY RESIDENTIAL DEVELOPMENT
5.	What is the date the applicant claims rights vested for this Project? AVGUST 14, 1997
6.	What, if any, construction or related actions have taken place on the property since that date? Inflastructure Construction 195 been Completed on Usaufied Mars

aC II as is 1		rmit File #	
of the project			
7. By what means does the applicant claimay be applicable.	m rights vested for	this Project? Please sp	ecify all that
• PERMIT		Alexa	1 11 1000
Type of Permit: PONING OPDINANCE	Date	of Application: 19915	1 19,1997
Permit Number: 86429	Date Issued: FW	7	
Expiration Date: 1			
• MASTER DEVELOPMENT P accepted <u>prior 16 September 1, 1997</u> are subject to p development rights ordinance (9/25/97) and project POADP acceptance date.	permit right conditions	within 18 months from the e	
Name:		#	
Date accepted:Exp	olration Date:	MDP Size:	acres
• P.U.D. PLAN			
Name:		##	
Date accepted:		•	
Plat Application		•	
Plat Name:	Plat #	Acreag	e:
Date submitted:	Expiration Date:		
(Note: Plat must be approved within 18 m	onths of application	n submittal date).	
Approved Plat		:	
Plat Name:	Plat #	Acreage:	Approval
Date: Plat recording Date:	Expiration	DateiVol./Pg	
(Note: If plat is not recorded within 3 year	rs of plat approval j	permit rights will expire	e).
• Other			
		:	
	4 - 41 - 4		
NOTE: Filing a knowlngly false statement under \$37.02 and \$37.10 of the Texas Peyears in jall and fine of up to \$10,000.	nt on this gocument	le as a state Jail felony	by up to two
I hereby certify that all information this Applic my belief the property owner is entitled to Ver	sted Rights for this of	documents is true and co	orrect and that it is
Print name: Habib A. ERKAN, JR			اسا مسا
Print name: Third IN DISMIT JE	Signature:	0// 4//	Date: 1-17-03

the state of the s

Sworn to and subscribed before me by	Habib H. Erkan	It File #
		on this 17th day of ssanyhand and seal of office.
EVELYN M. AGUILAR Notely Public, State of Texas My Commission Expires	_ Euly	State of Texas
Agril 20, 2005	Notary Public,	State of Texas
	City of San Antonio use	
Permit File: #		Date:
Approvéd	AS Of 1957	Disapproved
Review By: Assistant City Attor	D	ate: Jm 30, 2003
Comments:		

	·	:

CITY OF SAN ANTONIO

December 20, 1996

Mr. Dixie Watkins Dixie Watkins and Associates 3330 Oakwell Court, Suite 110 San Antonio, Texas, 78218

Re: Steubing Estate

POADP # 539

Mr. Watkins:

The City Staff Development Review Committee has reviewed Steubing Estate Preliminary Overall Area Development Plan # 539. Please find enclosed a signed copy for your files. You may now submit individual subdivision plat units at your convenience. Although your plan was accepted, please note the following:

- Access issues along State facilities will need to be resolved with the Texas Department of Transportation (TXDOT). For additional information about these requirements you can contact 'TXDOT at 615-5814.
- Based on the topography, a Flood Plain Study will probably be required.
- This development will probably need to conform to requirements associated with development over the Edwards Aquifer. For additional information about these requirements you can contact SAWS at 704-7305.

Please note that this action by the committee does not establish any commitment for the provision of utilities, services or zoning of any type now or in the future by the City of San Antonio. Additionally, this action does not confer any vested rights to plat under the existing Subdivision regulations. Any platting will have to comply with the Unified Development Code at the time of plat submittal.

If you have any additional questions or comments regarding this matter, please contact Elizabeth Carol. She may be reached at (210) 207-7900.

Sincerely,

Lebrusa Waldman by (eT)
Rebecca Waldman

Acting Director of Planning

DWP/EAC

cc: Andrew J. Ballard, P.E., Traffic Planning Engineer

PEANNING DEPARTMENT • P. O. BOX 839966 • SAN ANTONIO, TEXAS 78283-3966 TEL: (210) 207-7900 TDD: (210) 207-7911 FAX: (210) 207-4441

SAN ANTONIO

June 13, 2002

Mr. Watkins

Dixie Watkins III & Associates 3330 Oakwell Court #110 San Antonio, TX, 78218

Re: Steubing Estate

POADP # 539

Dear Mr. Watkins:

Your Preliminary Overall Area Development Plan, Steubing Estate, has failed to comply with Sec. 35-2072 Scope and Sec. 35-2076 Terms of validity of the U.D.C. 35:

Sec. 35-2072 Scope

The POADP shall be required in all instances when a tract of land within the city or the extraterritorial jurisdiction is platted or intended to be platted into two (2) or more units.

Sec. 35-2076 Terms of validity

"The POADP shall become invalid if a plat is not filed within eighteen (18) months from the date the POADP is accepted."

This POADP has been purged from our system, please note that you can always submit a new POADP application, fee and plan for our consideration.

If you have any questions regarding this matter, please contact Mr. Michael O. Herrera at (210) 207-7873.

Sincerely

Emil R. Moncivais AIA, AICP

Director of Planning

EM/MH.Jr.

cc: Bob Opitz, P. E., Development Services Robert De La Cruz, P.E., Development Services Arturo Villarreal Jr., P.E. Strom Water Engineering TRANSMISSION OK

TX/RX NO

0154

CONNECTION TEL

97345363

CONNECTION ID

03/14 09:12

ST. TIME USAGE T

00'47

PGS. SENT

2 OK

RESULT

City of San Antonio Planning Department

Municipal Plaza Building 114 W. Commerce

Mailing address: P. O. Box 839966

San Antonio, TX 78283-3966

From:

Pages sent including fax cover:

Please deliver to:

If you do not receive all pages, please call 207-7873

Name: Lee Wright	
Title:	
Organization:	
Phone:	

Name: Patricia Renteria	
Title: Secretary 1	
Division: Planning Dept.	
Phone: 207-7873	
Fax: 207-7897	

0155

TRANSMISSION OK

TX/RX NO CONNECTION TEL

94953108

CONNECTION ID ST. TIME

03/14 09:14 00'50 2

USAGE T PGS. SENT RESULT

2 OK

City of San Antonio Planning Department

Municipal Plaza Building 114 W. Commerce

Mailing address: P. O. Box 839966

San Antonio, TX 78283-3966

Pages sent including fax cover:

If you do not receive all pages, please call 207-7873

Please deliver to:

Name: Timothy Pruski
Title:
Organization:
Phone:
Fax: 495-3108

From:

Name: Patricia Renteria

Title: Secretary 1

Division: Planning Dept.

Phone: 207-7873

Fax: 207-7897

City of San Antonio Planning Department

Municipal Plaza Building 114 W. Commerce

Mailing address: P. O. Box 839966

San Antonio, TX 78283-3966

From:

Name: Patricia Renteria

-				•	
Pages	sent	1nc	luding	tax	cover.
uges	SCIIL	1110	idding	IdA	COVCI.

Please deliver to:

Name:

Title.

If you do not receive all pages, please call 207-7873

1100.	1 Itle: Secretary 1	
Organization:	Division: Planning Dept.	
Phone:	Phone: 207-7873	
Fax: 495-3108	Fax: 207-7897	
Remarks: Please disregard first L	-DC-Invalid	
	· · · · · · · · · · · · · · · · · · ·	
2 *		

City of San Antonio **Planning Department Letter of Certification**

FOR

Date:

3/14/03

ITEM	NAME:	STEUBING RANCH SU	JBDIVIS	ION UNIT 3		FILE#_	020390	s ^c
DOES NOT SATISFY SEC. 35-2075, INFORMATION REQUIRED PARAGRAPH (E) AND								
SEC. 35-2076 TERMS OF VALIDITY								
Master Development Plan (M.D.P.) (Formerly POADP) Plan Unit Development (P.U.D.)								
Number:		539		Number:		N/A		
Date:		12/20/96		Date:		la de la companya de	2	
	ST	EUBING ESTATE						
Neigh	borhood	Association to Notify:	F v		N/A			

The City of San Antonio Planning Department has reviewed the above referenced Plat or Plan for conformity with the provisions as stated in the City of San Antonic Unified Development Code (UDC). This Letter of Certification (LOC) attests to the following areas ONLY, Master Development Plan, Major Thoroughfare Plan, Neighborhoods and Historic Preservation. Any changes to the plat or plan affecting these areas will require a resubmittal for review to the department and the issuance of a new LOC.

Please attach this letter of certification with your complete final package to Land Development Services, Subdivision Section.

By: Michael Hun	SPECIAL PROJ. COORD.	3/14/03
Signature	Title	Date

A memo from the

CITY of SAN ANTONIO

Planning Department Master Development

TO: David Beals, P.E.	DATE: April 4, 2003						
Address: 6800 Park Ten Blvd., Suite 180 San Antonio, Texas 78213							
FROM: Michael O. Herrera, Special Projects Coordinator							
COPIES TO: File							
SUBJECT: Steubing Estate POADP # 539(Supplement)							
The proposed traffic circulation plan referenced above was heard by the							
	☐ Planning Commission						
	mil & Marin						
	Director of Planning COSA						
on the date shown.							
The following action was taken:	☐ APPROVED □ DISAPPROVED						
A plat will not be recorded pending site improvements, the required guarantee is posted or payment of impact fees are paid (or filed).							

If you have any questions regarding please call Mr. Michael O. Herrera @ 207-7873

City of San Antonio Development Services CITY OF SAIREQUEST FOR Subdivision Section CONTROL OF PLANNING TOTAL CONTROL OF PLANNI

. U3 MAR 19	AM 10: 1
b	Date 3/19/03
FROM: Luz	
PHONE NUMBER: 217-7900 F	AX NUMBER # 207-4441
PHONE NUMBER: 217-7900 F ITEM NAME: Steubing Ranch RE: Variance Regust.	1 V-3 FILE # 020 390
RE: Vanance (1905).	
V	
comment to the Planning Commission or I to the CONSULTANT OF RECORD	mitted for your review, recommendation, and or Director. Please review and forward your response Director . Return response as soon as possible, but no later he will commence from the date of receipt of this gency requires for this review. "Days" represents
Please Return By:	, 200
	lat-50 days Amending Plats – 10 days -15 days Other-15 days
☐I recommend approval	☐ I do not recommend approval
On, I notifie	d, the engineer/
subdivider/agent, of the corrections needed	
Subdivider/agent, or the corrections needed	to remove this objection. Let n
Comments:	
	e e e e e e e e e e e e e e e e e e e
Signature	Title Date

CITY OF SAM ANTONIO DEPARTMENT OF PLANNING 03 MAR 19 AM 10: 16

W.F. CASTELLA & ASSOCIATES, INC. Engineers • Surveyors • Planners

March 17, 2003

Roderick Sanchez Assistant Director of Development Services P.O. Box 839966 San Antonio, Texas 78283

Re: STEUBING RANCH SUBDIVISION UNIT 3, I.D. No. 020390

Dear Mr. Sanchez:

Unc was evitable af unc

On behalf of the owner/developer of STEUBING RANCH SUBDIVISION UNIT 3, we respectfully request a variance to Sections 35-2075 (e) and 35-2076 of the Unified Development Code (UDC). The Planning Department cited this subdivision as not complying with same. Both of these sections deal with Preliminary Overall Development Plans (POADPs). Section 35-2075 (e) relates - in part - to "proposed circulation system of collector, arterial, and local type B (clearly identified), and their relationship to any adjacent major thoroughfares". Section 35-2076 relates to "terms of validity".

- Subject POADP was titled "Steubing Estates". It was assigned POADP # 539 and was approved by the City of San Antonio on December 20, 1996.
- A Vested Rights Permit (VPR 02-02-071) was approved by the City on March 8, 2002 based on subject POADP.
- Based on same, whatever issues Planning has with the POADP appear to be irrelevant.
- * The applicant has taken all practical measures to minimize any adverse impacts on the public health, safety and welfare within this development.
- · Denial of this variance will result in a hardship for the developer. The use of the land will be limited by restrictions that were not required by the original POADP. The developer has proceeded with project engineering in good faith based on the approved POADP.
- · We trust that this hardship is unique because it is specific to the limiting boundaries of the approved POADP.

The hardship is not the result of the applicant's own actions. The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

The hardship is not the result of the applicant's own actions.

San Antonio, TX 78213

(210) 734-5351 FAX (210) 734-5363

6800 Park Ten Blvd., Suite 180-S

CITY OF SAN ANSTEUDING Ranch Unit 3
DEPARTMENT OF PLANNING

03 MAR 19 AM 10: 16

· The granting of the variance will not be injurious to other property and will not prevent the orderly subdivision of other property in the area in accordance with the approved POADP.

Therefore, we respectfully request a variance to Sections 35-2075 (e) and 35-2076 of the

Sincerely,

W.F. CASTELLA & ASSOCIATES, INC.

David P. Beales, P.E.

Project Manager

PLANNING COMMISSION REVISED

REPLAT& SUBDIVISION

AGENDA ITEM NO: _____ March 26, 2003

STUEBING RANCH, UNIT 3

MAJOR PLAT

020390 PLAT #

SUBDIVISION NAME

COUNCIL DISTRICT: 10

FERGUSON MAP GRID: 518 F-4

OWNER: Continental Homes, by Timothy D. Pruski

ENGINEER: W.F. Castella and Assoc., Inc., by David G. Brown

Date filed with Planning Commission: March 26, 2003

Location: Near the intersection of Knollcreek and Colton Well.

Services Available: SAWS Water and Sewer

Zoning: R-5 Residential Single Family District

Plat is in accordance with:

P.O.A.D.P. # 529, Stuebing Estate was approved on 12/20/96.

Proposed Use: Residential

Major Thoroughfare: Knollcreek is a secondary arterial, Type A, minimum

R.O.W. 86 feet.

APPLICANT'S PROPOSAL:

To plat 97 single family lots with 4.280 linear feet of public streets consisting of 24.492 acres.

DISCUSSION:

The Planning Department has cited: Section 35-2075 (e) of the UDC regarding information required and Section 35-2076 regarding Terms of Validity. The applicant's engineer has submitted a request for variances to the requirements. The Planning Department to does object to the granting of the variance as indicated in their attached report.

STAFF RECOMMENDATION:

Staff has reviewed the proposed plat and found it in conformance with the Unified Development Code with exception to the above-mentioned variances. With regards to these variances, staff does not concur with the applicant's justification, therefore the Director of Development Services recommends **DISAPPROVAL** of the variances and plat.

W.F. CASTELLA & ASSOCIATES, INC. Engineers • Surveyors • Planners

March 19, 2003

Roderick Sanchez Assistant Director of Development Services P.O. Box 839966 San Antonio, Texas 78283

Re: STEUBING RANCH SUBDIVISION UNIT 3, I.D. No. 020390

Dear Mr. Sanchez:

On behalf of the owner/developer of STEUBING RANCH SUBDIVISION UNIT 3, we respectfully request a variance to Sections 35-2075 (e) and 35-2076 of the Unified Development Code (UDC). The Planning Department cited this subdivision as not complying with same. Both of these sections deal with Preliminary Overall Development Plans (POADPs). Section 35-2075 (e) relates – in part - to "proposed circulation system of collector, arterial, and local type B (clearly identified), and their relationship to any adjacent major thoroughfares". Section 35-2076 relates to "terms of validity".

- Subject POADP was titled "Steubing Estates". It was assigned POADP # 539 and was approved by the City of San Antonio on December 20, 1996.
- A Vested Rights Permit (VPR 02-02-071) was approved by the City on March 8, 2002 based on subject POADP.
- Based on same, whatever issues Planning has with the POADP appear to be irrelevant.

The applicant has taken all practical measures to minimize any adverse impacts on the public health, safety and welfare within this development.

The following requirements must be specifically addressed according to the UDC:

1. If the applicant complies strictly with the provisions of these regulations, he/she can make no reasonable use of his/her property.

The applicant established a reasonable use for his property based on the approved POADP and Vested Rights Permits. The use of the land will be limited by restrictions that were not required by the original POADP. The developer has proceeded with project engineering based on the approved POADP.

Establishing new, and significantly more restrictive, criteria for land use in this development will prevent the applicant from making reasonable use of his property.

- 2. The hardship relates to the applicant's land, rather that personal circumstance. The hardship is specific to the use of the applicant's land and his capability to develop according to the approved POADP and Vested Rights Permits.
 - 3. The hardship is unique, or nearly so, rather than one shared by many surrounding properties.

The applicant believes that this hardship is unique because it is specific to the limiting boundaries of the approved POADP and Vested Rights Permits.

- 4. The hardship is not the result of the applicant's own actions. The applicant believes he is in compliance with the appropriate regulations in the development of this property based on the approved POADP and Vested Rights Permits. The hardship is not the result of the applicant's own actions but rather by the imposition of new restrictions on the development by the City Planning Department.
 - 5. The granting of the variance will not be injurious to other property and will not prevent the orderly subdivision of other property in the area in accordance with these regulations.

The granting of the variance will not be injurious to other property and will not prevent the orderly subdivision of other property in the area since it is in compliance with the approved POADP.

Therefore, we respectfully request a variance to Sections 35-2075 (e) and 35-2076 of the UDC.

Sincerely,

W.F. CASTELLA & ASSOCIATES, INC.

David P. Beales, P.E.

Project Manager

CITY OF SAN ANTONIO PLANNING DEPARTMENT

Interdepartmental Correspondence

TO:

Emil Moncivais, AICP, AIA - Director of Planning and

Jesus Garza, AICP - Planning Manager

FROM:

Ernest Brown - Planner II

COPY:

Mike Herrera, Special Project Coordinator

SUBJECT:

Plat #020390, Steubing Ranch Subdivision Unit 3

Variance Request.

DATE: March 25, 2003

The Comprehensive Division of the Planning Department has received and reviewed the March 17, 2003 letter of request for a variance to the Unified Development Code (UDC) section 35-2075 (e), Information required and 35-2076, Terms of Validity, submitted March 19, 2003.

FINDINGS:

The propose subdivision plat is associated with the approved Preliminary Overall Development Plan (POADP) # 539. Four thoroughfares bound this development: Loop 1604 (Freeway) on the north, O'Connor road (Secondary Arterial Type A) on the west, Judson road (Secondary Arterial Type A) on the east, and Union Pacific Railroad R.O.W. on the south. The above referenced plat #020390, Steubing Ranch Subdivision Unit 3 is located within the Reserve Tract as identified by POADP # 539 and has frontage on the north side of Knollcreek thoroughfare (Secondary Arterial Type A) as identified by the Major Thoroughfare Plan.

Applicant cites the following reasons for variance:

- A. Subject POADP was titled "Steubing Estates". It was assigned POADP # 539 and was approved by the City of San Antonio on December 20, 1996.
- B. A Vested Rights Permit (VPR 02-02-071) was approved by the City on March 8, 2002 based on subject POADP. Based on same, whatever issues Planning has with the POADP appear to be irrelevant.
- C. The applicant has taken all practical measures to minimize any adverse impacts on the public health, safety and welfare within this development.
- D. Denial of this variance will result in a hardship for the developer. The use of the land will be limited by restrictions that were not required by the original POADP. The developer has proceeded with project engineering in good faith based on the approved POADP.

- E. We trust that this hardship is unique because it is specific to the limiting boundaries of the approved POADP.
- F. The hardship is not result of the applicant's own actions.
- G. The granting of the variance will not be injurious to other property and will not prevent the orderly subdivision of other property in the area in accordance with the approved POADP.

Staff's review of the applicant's request cites UDC section 35-2075 (e) Information required and 35-2076 Terms of Validation and the following:

- A. A conditional letter of approval for POADP #539 date December 20, 1996, cited "any platting will have to comply with UDC at time of plat submittal". This was a contingency clause in the event any landuse change occurred other than the one identified on the approved POADP #539.
- B. Veste d Rights Permit VPR 02-02-071 approved by the City March 8, 2002, establish vesting on approved landuse as identified by POADP #539.
- C. Applicant has claimed vesting from his Traffic Impact Analysis (TIA) requirements, therefore, the Engineering Section of the Land Development Service Department provided a TIA for the propose landuse change of POADP #539. Please reference exhibit A.
- D. Approved POADP #539 met the UDC criteria as identified by its landuse and per the conditional letter. However, the applicant's change in landuse (which differs from the approved POADP # 539 landuse) now requires that the plat comply with the UDC criteria as cited. All items under UDC section 35-2075 shall be addressed at the time of final plat as stated in the conditional letter dated December 20, 1996. All platting will comply with the UDC.
- E. Hardship is n ot unique but simply a requirement of the UDC.
- F. The applicant's hardship is a result of his actions through zoning case # 86429, approved August 14, 1997, which changed the landuse, identifying a total of 196.17 acres.
- G. Granting the variance would not provide a review for an adequate traffic circulation system throughout the development. Thus risking the affects of the quality of life, safety and public welfare.

NOTE: As per UDC section 35-1022, Violations defined, prohibits any act of commission or omission contrary to the commands or directives of this chapter.

Recommendation:

Staff does not support the variance request as submitted.

Stuebing Ranch:

Knollcreek TIA 1012 DU's
The numbers I received showed 858 DU's, I eliminated Unit 4.

Knollcreek TIA Trip Rates - 9,685 ADT'S for Stuebing Ranch Elem School Trip Rates - 1,872 ADT's Middle School Trip Rates - 2,925 ADT's

For my analysis and to simplify the process I multiplied the number of DU's * 10 - 8580 ADT's

ADT Trip distribution:

Stuebing Ranch:

Rhyse Grove - 36% 50/50 (enter/exit) - 1544/1544 (Total of 3088 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 2145/2145 (Total of 4290 ADT's) Briley - 14% 50/50 (enter/exit) - 600/600 (Total of 1200 ADT's)

Elem School:

Rhyse Grove - 36% 50/50 (enter/exit) - 337/337 (Total of 6748 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 468/468 (Total of 936 ADT's) Briley - 14% 50/50 (enter/exit) - 131/131 (Total of 262 ADT's)

Middle School:

Rhyse Grove - 36% 50/50 (enter/exit) - 527/527 (Total of 1054 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 731/731 (Total of 1462 ADT's) Briley - 14% 50/50 (enter/exit) - 205/205 (Total of 410 ADT's)

TOTAL ADT's for Grandin Pass: Stuebing Ranch, Elem and Middle School - 6688 ADT's

Residential Collector Streets (In the words of John Friebele):

These streets serve to collect and distribute traffic between the residential and arterial street system. Collectors serve a greater purpose of thru movement than residential streets but still have a greater access function of adjacent residential property. These collector streets are usually two lanes and allow on street parking. Daily volumes range from 1,500 to 5,000 vehicles per day. The higher volume collectors should minimize "front - on" residential development and use "side on". These streets should be connected to the arterial street system so as to discourage thru movement of traffic not accessing property in the immediate area. Discontinuous streets (tee intersections), curvilear alignment, roundabouts, etc. are design features that may be used. These streets are typically 36 to 40 feet wide in width on 60 feet of ROW. Usual spacing of collectors 1/2 mile.

In my professional opinion and looking at the numbers I believe that a Residential Collector Street is required for this development. Planning and Development Service has pointed out to the developer several times on how this Collector can be placed within the subdivision. The Knollcreek Elem and Middle School TIA has recommended that a traffic signal be place at Grandin Pass and I have made modifications to the plans. The modification will improve traffic flow in and out of the site and improve the safety of pedestrians.

Knollcreek - Secondary Arterial Type B O'Connor - Secondary Arterial Type B Judson - Secondary Arterial Type B Loop 1604 Frontage Road

TIA - Traffic Impact Analysis

DU's - Dwelling Units ADT's - Average Daily Trips ROW - Right of Way

EXMISIT A"

From:

Richard De La Cruz

Sent:

Wednesday, March 12, 2003 9:53 AM

To:

Robert Opitz; Michael Herrera

Cc:

Emil Moncivais

Subject:

revisions

Stuebing Ranch:

For my analysis and to simplify the process I multiplied the number of DU's * 10 - 8580 ADT's

ADT Trip distribution:

Stuebing Ranch:

Rhyse Grove - 36% 50/50 (enter/exit) - 1544/1544 (Total of 3088 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 2145/2145 (Total of **4290 ADT's**)

Briley - 14% 50/50 (enter/exit) - 600/600 (Total of 1200 ADT's)

Total ADT's on Grandin Pass for the Stuebing Ranch Subdivision - 4290 ADT's

Residential Collector Streets (In the words of John Friebele):

These streets serve to collect and distribute traffic between the residential and arterial street system. Collectors serve a greater purpose of thru movement than residential streets but still have a greater access function of adjacent residential property. These collector streets are usually two lanes and allow on street parking. Daily volumes range from 1,500 to 5,000 vehicles per day. The higher volume collectors should minimize "front - on" residential development and use "side on". These streets should be connected to the arterial street system so as to discourage thru movement of traffic not accessing property in the immediate area. Discontinuous streets (tee intersections), curvilear alignment, roundabouts, etc. are design features that may be used. These streets are typically 36 to 40 feet wide in width on 60 feet of ROW. Usual spacing of collectors 1/2 mile.

In my professional opinion and looking at the numbers I believe that a Residential Collector Street is required for this development. Planning and Development Services has pointed out to the developer several times on how this collector can be placed within the subdivision. To accomodate the developer it was agreed that some portions of the collector street could be classified as a Local B Street. The Knollcreek Elem and Middle School TIA has recommended that a traffic signal (traffic signal shall be warranted and approved by Traffic Engineering PWs) be place at Grandin Pass and I have made modifications to the plans. The modification will improve traffic flow in and out of the site and improve the safety of pedestrians.

Modification to Plans:

- 1 Close Arcadia Park at Gradin Pass (This will allow more queuing and reduce the amount of conflict points).
- 2 No houses fronting on Argyle Way at Wesco Bluff (This is the only N-S connection of this subdivision).

A Traffic Impact Analysis was not completed for the Stuebing Ranch Development.

Future Traffic with the addition of the Elementary and Middle School (2005)

Elem School:

Rhyse Grove - 36% 50/50 (enter/exit) - 337/337 (Total of 6748 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 468/468 (Total of 936 ADT's) Briley - 14% 50/50 (enter/exit) - 131/131 (Total of 262 ADT's)

Middle School:

Rhyse Grove - 36% 50/50 (enter/exit) - 527/527 (Total of 1054 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 731/731 (Total of 1462 ADT's) Briley - 14% 50/50 (enter/exit) - 205/205 (Total of 410 ADT's)

Richard L. De La Cruz, P.E. Senior Engineer Development Services Department (210) 207-2855 (Office) (210) 759-1215 (Pager) rdelacruz@sanantonio.gov

Time Line for Steubing Estates POADP # 539

- 1. POADP #539 was approved December 20, 1996
- April 25, 2002 Steubing Estates, U-1 was submitted to Planning Department for Approval.
 Note: During the review for Unit- 1 it was determined that POADP # 539 had failed to comply with Sec. 35-2072 SCOPE and Section 35-2076 Terms of Validity as per (OLD) U.D.C. Chapter 35.
- 3. May, 2002 contacted Engineer (Lee Wright @ W.F. Castella) and informed of findings.

 Engineer was told he would be receiving letter regarding status of POADP.
- 4. June 13,2002 Letter addressed to Mr. Dixie Watkins informing him that POADP #539 had been PURGED from the Master Plan System.
- 5. June 20, 2002 Engineer Submitted copy of UDC Sec 35-2076 Terms of Validity and Sec 35-4215 Filing Date contesting the Disapproval letter.(see copy of UDC sections 35-2076 & 35-4215
- 6. July 01,2002 forwarded legal opinion From Tom Shute city attorney on Terms of Validity to Lee Wright.
- 7. August, 2002 Habib and Tom met to discuss documentation that would Validate Steubing Estates POADP # 539.
- 8. August 26,2002 meeting with Habib Erkan, George Peck, Lee Wright, Ernest Brown, Richard De La Cruz, Michael Herrera, Todd Sang, Tim Pruski, Chris M. Martinez. (see copy of signing sheet)
- Michael Herrera acknowledged for the record that POADP # 539 was valid as per Tom Shute's meeting with Habib.
- Mr. Pruski was informed that even though his POADP was valid it lacked the internal collector street system required by Section 35-2074 Information required, "The POADP, as a minimum, shall include the following information:" This is something we would be looking for at the time of platting as stated in the Conditional Letter of approval dated December 20, 1996:
 - " Any platting will have to comply with the Unified Development Code at the time of plat submittal"

The proposed land use change from a Mining Operation to Single Family Residential warrants compliance.

SAN ANTONIO CODEPARTMENT OF PLANNING

02 JUN 20 AM 11:59

- (f) Contour lines at intervals no greater than ten (10) feet.
- (g) Ownership from title and/or city or county roads for adjacent properties and, if known, proposed development of such land.
- (h) Existing adjacent or perimeter streets (including right-of-way widths), intersections, and developments.
- (i) One hundred-year floodplain limits as identified from the most current Flood Insurance Rate Maps published by the Federal Emergency Management Agency for the City of San Antonio and/or the applicable county. In cases where the one hundred-year floodplain for a particular watercourse is not shown on the published FIRM, a professional engineer shall develop a preliminary one hundred-year floodplain for each watercourse serving a watershed in excess of one hundred (100) acres.
- (j) Location map indicating the location and distance of the POADP in relation to adjacent streets and at least two (2) major thoroughfares.
- (k) Name and address of the developer. (Ord. No. 65513, § 2(f), 8-13-87; Ord. No. 86711, § 6, 9-25-97)

Sec. 35-2076. Terms of validity.

The POADP shall be maintained in the permanent files of the director of planning and shall be conformed to in processing subsequent unit plats. The POADP shall remain valid until all units contained in the POADP are completed or upon receipt of a proposal to modify the POADP filed by the developer. The POADP shall become invalid if a plat is not filed within eighteen (18) months from the date the POADP is accepted. (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2077. Revisions.

Revisions to a POADP may be made at any time by submission of a new POADP to the director of planning. Within fifteen (15) working days after filing of the proposed revisions, the

Sec. 35-2072. Scope.

The POADP shall be required in all instances when a tract of land within the city or its extraterritorial jurisdiction is platted or intended to be platted into two (2) or more units. In lieu of a POADP, the applicant may submit a preliminary PUD plan which includes all of the area to be platted into two (2) or more units.

(Ord. No. 65513. § 2(f). 8-13-87; Ord. No. 74489. §

(Ord. No. 65513, § 2(f), 8-13-87; Ord. No. 74489, § 1(Att. A), 10-3-91)

Sec. 35-2073. Filing.

Six (6) prints of the POADP shall be filed with the planning department for review by city agencies and departments at the earliest possible date but no later than the application date for the letters of certification required by Article IV. Within twenty (20) work days of submittal, the director of planning shall provide a written response indicating whether or not the POADP complies with current regulations, the city master plan, and parts thereof. If the POADP is not in compliance, the applicant may work with staff to reach a mutually satisfactory resolution or appeal to the planning commission for a final decision. (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2074. Review and acknowledgment.

No plat shall be considered filed until review and acceptance of the POADP is completed. (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2075. Information required.

The POADP, as a minimum, shall include the following information:

- (a) Perimeter property lines.
- (b) Name of the plan and the subdivisions.
- (c) Scale of map.
- (d) Proposed land uses by location, type, and acreage.
- (e) Existing and proposed circulation system of collector, arterial, and local type B streets (clearly identified), and their relationship to any adjacent major thoroughfares; and any proposed alternative pedestrian circulation system.

shall indicate the section and specific requirement of the regulations and the respect in which the proposed plat does not comply. The applicant may then revise the plat or may request the proposed plat he filed with the planning commission provided he/she submits a letter requesting a variance as specified in section 35-4009.

(c) Validation period. Letters of certification shall remain valid for six (6) months from the date of issuance by the certifying department/agency. After that time period, new or updated letters of certification shall be required to file a proposed plat with the planning commission. (Ord. No. 65513, § 2(f), 8-13-87; Ord. No. 68978, § 1, 3-9-89)

Sec. 35-4215. Filing date.

For the purpose of the time limits established by Vernon's Local Government Code, Section 212.009, no plat shall be deemed filed with the planning commission until the plat, performance agreement as applicable, tax certificates, letters of certification and, if applicable, a request for a variance as specified in section 35-4006 have been submitted to the planning commission as required by section 35-4211.

(Ord. No. 65513, § 2(fl, 8-13-87; Ord. No. 65853, Att. 4(4), 10-7-87)

Sec. 35-4216. Reviewing agencies.

In addition to the certifying departments/ agencies, copies of the plat shall be distributed to the city tax office, planning department (land development services), Southwestern Bell Telephone, and Cable Television. Copies of the plat shall also be distributed to the following departments/agencies as appropriate: Aviation Department, Building Inspections Department (Historic Preservation), Parks and Recreation Department, San Antonio River Authority, San Antonio Development Agency, Bexar Metropolitan Water District, and Bexar County Public Works Department. Reviewing departments/agencies may request additional information as necessary from the plat applicant; however, they shall provide

their comments back to the Plantag Dapartment as soon as possible, but no later than thirty (30) days after the filing date.
(Ord. No. 68978, § 1, 3-9-89; Ord. No. 72635, § 1 (Att. I), 11-15-90)

Sec. 35-4217. Plat approval.

- (a) Planning commission approval. The planning commission shall act on a plat within thirty (30) days after the date the plat is filed. Within those thirty (30) days the commission may postpone such action if it finds that modifications to the plat are necessary in order to comply with this chapter. A plat is considered approved by the planning commission unless it is disapproved within the thirty (30) day period.
- (b) Administrative approval of minor plats. The director of planning may approve minor plats which do not involve a variance request or a replat public hearing. The director may, for any reason, elect to present a minor plat to the planning commission for consideration. The director of planning shall not disapprove a minor plat and shall refer any plat which the director refuses to approve to the commission within thirty (30) days of the filing date.
- (c) Plat withdrawal. Once filed with the planning commission, a plat may be withdrawn provided that a written notice of withdrawal stating the reasons for the request is submitted to the director of planning. The thirty (30) day time limitation shall cease on the date that the notice is received by the director; however, the director may elect to present a withdrawal request to the planning commission for consideration.
- (d) Approval expiration. If a plat is not filed for record in the county deed and plat records within three (3) years from the date of plat approval or upon expiration of any time extension thereto, approval of such plat shall expire. Thereafter, should the applicant desire to record the plat, a new application shall be required in the same manner as for a previously unsubmitted plat. Prior to the three (3) year expiration date the application shall be required in the same manner as for a previously unsubmitted plat. Prior to the

- (3)
- Collector: A street which provides some access to abutting property and collects traffic from local streets and connects with the major system of arterial streets and highways.
- (4) Cul-de-sac: A street with a single common ingress and egress and with a turnaround at the end.
- (5) Dead end: A street with a single common ingress and egress.
- (6) Elbow: A turn in a minor street that includes extra pavement adequate for a turnaround.
- (7) Eyebrow: A paved area placed along the linear portion of a street which allow both unimpeded through and turnaround traffic movements.
- (8) Intersection: Where two (2) or more streets cross at grade.
- (9) Local: A street designed to provide vehicular access to abutting property and to discourage through traffic.
- (10) Local "Type A": A street used for primary and secondary access to single-family detached residential units or duplex residential units where such residential units comprise seventy-five (75) percent of the abutting street frontage on both sides of a particular block.
- (11) Local "Type B": A street used for primary and secondary access to all residential areas except those specified to be served by a "Type A" local street. Also, this street shall be used for secondary access and circulation to community facilities (schools, parks, etc.), and other traffic generators such as commercial and industrial areas.
- (12) Marginal access: The type of street which is used to provide direct access to abutting properties and protection from through traffic.
- (13) Private: Any street not dedicated to the public and to be maintained by a private entity.
- (14) Stub: A temporary portion of street not greater than one lot's length, allowed as a future connection to an adjacent subdivision or phase.

Structure: A combination of materials to form a construction for use, occupancy, or ornamentation whether installed on, above, or below the surface of land or water.

Subdivider: Any person, or their agent, having an interest in land that is the subject of an application for subdivision.

Subdivision: A division of any tract of land into two (2) or more parts for the purpose of laying out any subdivision of any tract of land or any addition to the city, or for laying out suburban, building, or other lots, or streets, alleys, or parks or other portions intended for public use, or the use of purchasers or owners of lots fronting thereon or adjacent thereto. A subdivision includes a resubdivision (replat).

Substantial improvement means any repair, reconstruction, or improvement of a structure, the cost of which equals or exceeds fifty (50) percent of the market value of the structure either (1) before the improvement or repair is started or (2) if the structure has been damaged and is being restored, before the damage occurred.

Swale: A low lying or depressed stretch of land without a defined channel or tributaries.

Tavern: Any use in which the primary purpose is the sale of alcoholic beverages for on-premises consumption which may or may not include dancing.

Temporary common worker employer: A person or agency that provides common worker employees to a third party user, that maintains a central location where common workers assemble and are dispatched to work, and that is required to obtain a license from the Texas Department of Licensing and Regulation.

Tertiary containment: A method by which a third level of containment is provided for underground storage tanks by means of a wall or barrier installed around a double-walled tank and piping system (or approved alternative) in a manner designed to prevent a release of the regulated substance from migrating beyond the tertiary

DATE: 2-11-03

SIGN IN MASTER DEVELOPMENT PLAN MEETING

	NAME	ADDRESS/PHONE NO.
1.	Mark Sparrers	211 Noth Low 1604 12 5076130 San Antonio, TX. 78232 496-2668
2.	Bob Onto	DSD 207-7587
3.	Christi Tonner	DSD 207-5026
4.	Tim Pruski	C = 1501
5.	110 11	170m ES 496 - 2668
6.	Whellpiel HERRONS	6150
7.	19/16/18/EC/JEN/BONA	PLANNING 7.07-1038
8.		
9.		
10.		
11.		
12.		,
13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		
21.		
22.		
23.		

quate stormwater conveyance, increased aquifer recharge, water quality, habitat protection, and increased recreational opportunities. (Ord. No. 86711, § 4, 9-25-97)

Secs. 35-2040-35-2050, Reserved.

Sec. 35-2051. Requirements for conformity with the master plan.

This section coordinates the various citations within the Unified Code of Development Regulations that refer to the master plan. It is anticipated that with additional reference to the city's master plan and requirements for conformity, the city will see a genuine effort toward implementation of the plan and its elements.

- (a) Preliminary overall area development plans (POADP) shall conform to the master plan.
- (b) Subdivisions shall conform to the master plan and the parts thereof.
- (c) The zoning regulations and districts as established in this chapter have been made in accordance with a comprehensive plan.
- (d) The zoning commission, in those instances wherein special approval of city council is required, shall consider each such proposed use and make its recommendations to the city council with reference thereto including its recommendation, among other things, as to proper location with respect to the master plan.

 (Ord. No. 65513, § 2(f), 8-13-87)

'Sec. 35-2052. Impact fees.

(a) Impact fees for water and sanitary sewer capital facilities are established in Article V in accordance with the requirements of V.T.C.A., Local Government Code Chapter 395 which relates to the financing of capital improvements required by new development in political subdivisions. Chapter 395 specifically sets forth the process which political subdivisions must follow in order to impose legally authorized impact fees as a means to fund the costs of capital improvements necessitated by and attributable to new development. The city has followed that process in adopting Article V of this code. Impact fees for capital improvements related to drainage may be imple-

mented on a watershed specific basis in conjunction with city council adoption of individual watershed master drainage plans.

(b) It is the policy of the city to implement impact fees in a manner which is consistent with, and complementary to, other city policy objectives such as advancing economic development, encouraging contiguous growth, and increasing the availability of affordable housing as demonstrated through the creation of the Housing Trust Fund (Ordinance No. 67895) and the Housing Master Plan Task Force (Ordinance No. 70728). Article V provides for lower impact fee rates for the inner part of the city which is consistent with the affordable housing and contiguous development policy objectives. This article also permits the City Council to authorize payment from the city's sewer enterprise fund for part or all of an assessed impact fee for a given development (determined on a case-by-case basis) when it deems full collection of the impact fee would be contrary to established economic development policy objec-

(Ord. No. 71729, § 1(Att. I, § 1), 6-14-90; Ord. No. 86711, § 5, 9-25-97)

Secs. 35-2053-35-2070. Reserved

DIVISION 2. PRELIMINARY OVERALL AREA DEVELOPMENT PLANS

Sec. 35-2071. Purpose.

The preliminary overall area development plan (POADP) is a mechanism which enables city and developer collaboration to enhance planning and timeliness of plat processing and review. The POADP is intended to be a flexible plan which is an overview of a subdivider's projected land development. In this context, the POADP will be used to determine if the proposed development is in compliance with current regulations and the city master plan, and to ensure adequate traffic circulation within the property to be developed as well as to and from adjoining properties. The POADP will also serve as a source of information for the city to be used in its planning activities. (Ord. No. 65513, § 2(f), 8-13-87)

From:

Richard De La Cruz

Sent:

Thursday, February 27, 2003 3:34 PM

To: Subject: Michael Herrera stuebing ranch unit 3

mike - bob approved on 2-25-03 (ice day).

TPLTM415

CERTIFICATIONS & REVIEWS SUMMARY

02/27/03

CMD: 12S PLAT: TART:00390 NAME/KEY: _____

AGENCY: PW

PLAT: 2002000390 NAME: STEUBING RANCH U-3

APPLICATION DATE: 7 31 2002 REVIEWS COMPLETED

START: 08 24 2002 DUE: 04 10 2003 DAYS LEFT:

CURRENT

AGENCY STATUS DAY IN DAY OUT NOTES

PWTRF_ WRV 12 11 2002 12 26 2002 RETURNED TO ENGINEER_RLL_ PWTRF_ APR 1_21 2003 1_31 2003 OK RLL_____

PWTRF_ APR 1_21 2003 1_31 2003 OK RLL_ TIA__ APR 2_25 2003 2_25 2003 OK AS PER RWO_

Richard L. De La Cruz, P.E. Senior Engineer Development Services Department (210) 207-2855 (Office) (210) 759-1215 (Pager) rdelacruz@sanantonio.gov

	1
A TCS INC. Company	
W.F. CASTELLA & ASSOCIATES, INC.	
Engineers • Surveyors • Planners	Our Reference #:
	Out Reference #:
Date: 2/7/03	;
TO: MIKE HERRERA	At Fax #: 207 7897
From: LEE WRIGHT	
Reference: STEUBING	RANCH VPP
Number of pages to follow our NEC/NEFAX 3 EX	
Dial 1 - 210 - 734-5363	_3
IF YOU HAVE ANY PROBLEMS RECEIVING T Dial 1 - 210 - 734-5351	HIS TRANSMISSION,
	•
e é j	, e x
ADDITIONAL MESSAGE	E/INSTRUCTIONS:
MIKE	·
ARE WE NOW	ALLOWED TO
	STEUBING RANCH
DEVELOPMENT?	FLENSE GIVE
ME A CALL.	
. 1	,
	Thank You
3	5

IM PRUSKI

G:\WPWINDOC\WFC\FORM.FAX

F		
Sworn to and subscribed before me by in the year 20 EVELYN M. AGUILAR Notaly Public, State of Texas My Commission Expires April 28, 2005	NADID H. ECKAN	on this 17th day of seal of office. State of Texas
	City of San Antonio use	
Permit File: #		Date:
Review By:	As of 1997 0	Disapproved ate: Im 30, 2003
Assistant City Auto	rney	
Comments:		1
		1
	·	
	· · · · · · · · · · · · · · · · · · ·	·

(WFCENGR.TXDIRECT.NET)

DATE: 9-26-02

SIGN IN MASTER DEVELOPMENT PLAN MEETING STEUBING #539 (P.O.D.D.)

-	NAME	ADDRESS/PHONE NO.
1.	HABIB ERKAN JR	Earl & Brown
2.	GEOPLE PECK	W.F. CASTRUA
3.	Lee Wright	W.F. Castella
4.	ERMEST BROWN	CSA PLANHING
5.	Richard L. De La Guz	DSD-TIA-Reviews
6.	MICHAEL O HERRENS	C.S. A. PLANDERS.
7.	Todo SANG	C.05A DSD /207-7741
8.	Tim Pruski	CONTINENTAL HOMES.
9.	CHRIS M. MARTINEZ	CONTINENTAL FLOMES
10.	,	
11.		
12.		
13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		
21.		
22.		
23.		

FW: Stuebbing Ranch

Michael Herrera

From:

Michael Herrera

Sent:

Friday, March 07, 2003 5:30 PM

To:

Louis Marin

Cc:

Emil Moncivais; Richard De La Cruz; Ernest Brown; Christi Tanner; Robert Opitz; Todd Sang;

Florencio Pena

Subject: RE: Steubing Ranch

Tracking: Recipient

Louis Marin

Read: 3/10/2003 8:36 AM

Emil Moncivais

Read: 3/11/2003 10:42 AM

Ernest Brown

Richard De La Cruz Read: 3/10/2003 7:00 AM Read: 3/10/2003 8:46 AM

Christi Tanner

Read: 3/10/2003 8:07 AM

Robert Opitz

Read: 3/10/2003 7:31 AM

Todd Sang

Read: 3/10/2003 8:02 AM

Florencio Pena

Read: 3/10/2003 11:57 AM

Richard Carrizales Read: 3/10/2003 8:00 AM

Louis, this is going to take a lot more than just a conference call. You should be briefed on the History and the Facts surrounding this project before any calls are made. I'm available on Tuesday 3/11/03 all day. Let me know what time?

thanks

Michael O. Herrera,

Special Projects Coordinator Comprehensive Division Planning Department

----Original Message----

From: Louis Marin

Sent: Friday, March 07, 2003 1:40 PM

To: Robert Opitz; Roderick Sanchez; Michael Herrera

Cc: Christi Tanner; Richard De La Cruz

Subject: RE: Stuebbing Ranch

Importance: High

I would like to set up a conference call with the developer. Who is available to talk to the developer and myself? Also what time would be acceptable? Please advise!!!!

----Original Message----

From: Robert Opitz

Sent: Friday, March 07, 2003 12:08 PM

To: Roderick Sanchez; Louis Marin; Michael Herrera

Cc: Christi Tanner; Richard De La Cruz

Subject: RE: Stuebbing Ranch

This has to do with both our Division and Planning's request to provide for a collector

circulation street through the total development. To my knowledge, this has not been provided on the Master Development Plan to the Planning Dept. I believe the developer feels they have presented everything needed and required by the UDC and do not feel this request is justified.

----Original Message-----From: Christi Tanner

Sent: Friday, March 07, 2003 9:36 AM

To: Richard Carrizales **Cc:** Robert Opitz

Subject: FW: Stuebbing Ranch

Rick

Please find out the status of all the Stuebing Ranch Plats and it's also spelled Steubing Ranch and get with Bob so we get back to Rod as soon as possible.

Thanks!! Christi

PS see you guys at 2pm!

----Original Message---From: Roderick Sanchez
Sent: Thu 3/6/2003 6:06 PM
To: Christi Tanner

Cc.

Subject: FW: Stuebbing Ranch

Christi, Do you know what is going on with this plat? This person went to the City Manager's office to complain about a requirement. Thanks

Roderick J. Sanchez, AICP Development Services

----Original Message----

From: Louis Marin

Sent: Wednesday, March 05, 2003 5:30 PM

To: Edward Guzman; Roderick Sanchez

Subject: RE: Stuebbing Ranch

----Original Message----

From: Louis Marin

Sent: Tuesday, March 04, 2003 3:24 PM

To: Roderick Sanchez
Cc: Jelynne Burley

Subject: Stuebbing Ranch

Importance: High

Rod, can you give me a status report on the Stuebbing Ranch Plat. This plat was filed by Continental Homes. They claim that they submitted this plat back in May 2002 and received a certification letter. They informed me that the City is requesting them to use a Type B collector street. They claim to have other issues with the handling of their plat and would like to settle them.

Any info that you can give would be greatly appreciated. Thanks.

Louis J. Marin City Manager's Office 207-6567

From:

Roy Ramos

Sent:

Monday, March 24, 2003 7:35 AM

To:

Michael Herrera

Cc:

Jesus Garza

Subject:

FW: Hunters Pond Voluntary Annexation

Below is what I provided Jesus as a draft and copied you on Feb 26, and requested Jesus forward similar to Adrian Lopez, NAD.

Roy Ramos Senior Planner Comprehensive Division Planning Department 207-7839 - Phone 207-7897 - Fax 759-3600 - Pager rramos@sanantonio.gov

----Original Message----

From:

Roy Ramos

Sent:

Wednesday, February 26, 2003 8:55 AM

To: Subject: Jesus Garza; Michael Herrera RE: Hunters Pond Voluntary Annexation

I think we should attach the status memo I prepared and submitted to you as a draft this morning (2/26/03).

Letter to David Earl.doc

Roy Ramos Senior Planner Comprehensive Division Planning Department 207-7839 - Phone 207-7897 - Fax 759-3600 - Pager rramos@sanantonio.gov

-----Original Message-----

From:

Jesus Garza

Sent:

Thursday, February 20, 2003 1:21 PM

To:

Roy Ramos

Subject:

FW: Hunters Pond Voluntary Annexation

Please check and type response. Sent it through me first.

----Original Message----

From:

Adrian Lopez

Sent:

Thursday, February 20, 2003 11:55 AM

To:

Jesus Garza Raquel Favela

Subject:

Hunters Pond Voluntary Annexation

Mr. Garza,

Per my phone message, I am sending you the backup information for my request on the Hunters Pond Voluntary Annexation. Yesterday, members of the TIF (Tax Increment Financing) unit and Raquel Favela, Neighborhood &

************* TX REPORT *** *************

TRANSMISSION OK

TX/RX NO

0156

CONNECTION TEL CONNECTION ID

97345363

RESULT

ST. TIME USAGE T PGS. SENT 03/14 10:33 00'47

2 OK

City of San Antonio Planning Department

Municipal Plaza Building 114 W. Commerce

Mailing address: P. O. Box 839966

San Antonio, TX 78283-3966

Pages sent including fax cover:

If you do not receive all pages, please call 207-7873

Please deliver to:

Name: Title: Organization: Phone: Fax: r

From:

Name: Patricia Renteria Title: Secretary 1 Division: Planning Dept. Phone: 207-7873 Fax: 207-7897

From:

Richard De La Cruz

Sent:

Tuesday, October 22, 2002 1:38 PM

To:

Michael Herrera

Subject:

FW: Stuebing Ranch Unit 3

FYI

----Original Message----

From: Robert Opitz

Sent: Wednesday, October 16, 2002 11:49 AM

To: 'Peck, George' Cc: Richard De La Cruz

Subject: RE: Stuebing Ranch Unit 3

George: I am familiar with this property and the area to be developed. My position is still that this is a major thoroughfare and 86-ft of right-of-way is required with two 24-ft lanes in each direction and a 14-ft median. Anything else is not acceptable. I am aware of the other arguments and reasons for this and that. Your roadway section will transition to the existing width pavement of Knollcreek to the south. If you have a problem tying it in, we will be happy to assist you. Please coordinate with the school district to insure that your median openings are properly located. Thank you for your assistance.

----Original Message----

From: Peck, George [mailto:george.peck@tcb.aecom.com]

Sent: Tuesday, October 15, 2002 8:54 AM

To: Robert Opitz

Subject: Stuebing Ranch Unit 3

Bob,

Tim Pruski with Continental Homes has asked me to setup a meeting between you, him and myself onsite to discuss the pavement width of Knollcreek. We are tying into a section of Knollcreek that has 44 feet of pavement and are transitioning to 48 feet of pavement because Knollcreek shows up as a secondary arterial on the Major Thoroughfare Plan. We are not providing any medians.

We had a meeting with Mike Herrera, Richard DeLaCruz, Ernest Brown, Continental, Lee Wright from my office and myself to discuss this issue and

came to some tentative agreements as to the width that the city would approve. Tim wants to meet in the field with you to get your opinion and come to a conclusion on this issue so that we may finalize our plans.

Please let me know when you have some time. The only time I have this week

is Thursday morning or early afternoon. Other than that it will have to be

anytime next week.

Please let me know.

Thanks for your time.

George W. Peck, P.E. W.F. Castella & Associates, Inc.

From:

Richard De La Cruz

Sent:

Wednesday, March 12, 2003 7:49 AM

To: Subject: Robert Opitz; Michael Herrera spare time at home for stuebing ranch

Stuebing Ranch:

Knollcreek TIA 1012 DU's
The numbers I received showed 858 DU's, I eliminated Unit 4.

Knollcreek TIA Trip Rates - 9,685 ADT'S for Stuebing Ranch Elem School Trip Rates - 1,872 ADT's Middle School Trip Rates - 2,925 ADT's

For my analysis and to simplify the process I multiplied the number of DU's * 10 - 8580 ADT's

ADT Trip distribution:

Stuebing Ranch:

Rhyse Grove - 36% 50/50 (enter/exit) - 1544/1544 (Total of 3088 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 2145/2145 (Total of **4290 ADT's**) Briley - 14% 50/50 (enter/exit) - 600/600 (Total of 1200 ADT's)

Elem School:

Rhyse Grove - 36% 50/50 (enter/exit) - 337/337 (Total of 6748 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 468/468 (Total of 936 ADT's) Briley - 14% 50/50 (enter/exit) - 131/131 (Total of 262 ADT's)

Middle School:

Rhyse Grove - 36% 50/50 (enter/exit) - 527/527 (Total of 1054 ADT's) Grandin Pass - 50% 50/50 (enter/exit) - 731/731 (Total of 1462 ADT's) Briley - 14% 50/50 (enter/exit) - 205/205 (Total of 410 ADT's)

TOTAL ADT's for Grandin Pass:

Stuebing Ranch, Elem and Middle School - 6688 ADT's

Residential Collector Streets (In the words of John Friebele):

These streets serve to collect and distribute traffic between the residential and arterial street system. Collectors serve a greater purpose of thru movement than residential streets but still have a greater access function of adjacent residential property. These collector streets are usually two lanes and allow on street parking. Daily volumes range from 1,500 to 5,000 vehicles per day. The higher volume collectors should minimize "front - on" residential development and use "side on". These streets should be connected to the arterial street system so as to discourage thru movement of traffic not accessing property in the immediate area. Discontinuous streets (tee intersections), curvilear alignment, roundabouts, etc. are design features that may be used. These streets are typically 36 to 40 feet wide in width on 60 feet of ROW. Usual spacing of collectors 1/2 mile.

In my professional opinion and looking at the numbers I believe that a Residential Collector Street is required for this development. Planning and Development Service has pointed out to the developer several times on how this Collector can be placed within the subdivision. The Knollcreek Elem and Middle School TIA has recommended that a traffic signal be place at Grandin Pass and I have made modifications to the plans. The modification will improve traffic flow in and out of the site and improve the safety of pedestrians.

Knollcreek - Secondary Arterial Type B O'Connor - Secondary Arterial Type B Judson - Secondary Arterial Type B Loop 1604 Frontage Road

TIA - Traffic Impact Analysis

DU's - Dwelling Units ADT's - Average Daily Trips ROW - Right of Way

Richard L. De La Cruz, P.E. Senior Engineer Development Services Department (210) 207-2855 (Office) (210) 759-1215 (Pager) rdelacruz@sanantonio.gov February 26, 2003

Mr. David Earl Earl & Brown, P.C. Riverview Towers 111 Soledad, Suite 1111 San Antonio, Texas 78205

Re: Annexation petitions

Dear Mr. Earl:

The purpose of this letter is to provide you with a preliminary status report in response to annexation petitions filed by your office in August of 2002. The petitions were for the West Pointe II East & West, Southfork, Hunter's Pond, Southton Road and the Liberte' Area in east Bexar County. The petitions were processed by staff and presented to the City's Management Team and the City Council's Balanced Growth Committee in conjunction with requests for consideration of Tax Increment Financing (TIF) for these areas.

The West Pointe II East & West and the Southfork areas were not annexed due to their location and proximity to existing City fire stations and the cost associated to incorporate these areas into the budget process for the provision of other City services. During the study period, it was determined the areas were cost prohibited and annexation was not in the best interest of the City.

The Hunter's Pond and the Southton Road areas were annexed for limited purposes as part of Areas 1-6, Southside Initiative areas, effective January 5, 2003, and are in the three-year annexation plan study for annexation in December of 2005.

The Liberte' area in east Bexar County was located within the boundaries of an Emergency Service District (ESD) and was not considered for annexation.

Sincerely,

Emil Moncivais Planning Director

Cc: Jesus Garza, Planning Manager Roy Ramos, Senior Planner Bill Wood, Assistant City Attorney

Subject:

FW: Vested Rights for Stuebing Estates POADP #539

Location:

3rd Floor Conf.

Start: End: Fri 11/1/2002 8:30 AM Fri 11/1/2002 10:00 AM

Show Time As:

Tentative

Recurrence:

(none)

Meeting Status:

Not yet responded

Required Attendees:

Michael Herrera

Importance:

High

----Original Appointment----

From:

Michelle Gonzalez

Sent:

Thursday, October 31, 2002 11:54 AM

To:

Michelle Gonzalez; Emil Moncivais; Tom Shute; Richard De La Cruz; Robert Opitz; Jesus Garza; John McDonald; Christi Tanner; Florencio Pena; Roderick Sanchez; John Jacks; Arturo Villarreal; Edward Guzman; Todd Sang; Michael Herrera; Ernest Brown

Subject:

Vested Rights for Stuebing Estates POADP #539

When:

Friday, November 01, 2002 8:30 AM-10:00 AM (GMT-06:00) Central Time (US & Canada).

Where:

3rd Floor Conf.

Importance:

e: High

If there are any question regarding this meeting please call Mr. Herrera at 7-7038. Attendance is very important!

Subject:

FW: Meeting w/Florencio Pena, Rod Sanchez, Richard DeLaCruz, Tom Shute and Michael

Herrera to discuss Continental Homes Issues

Location:

Municipal Plaza Bldg., 3rd Floor Conference Room

Start: End: Mon 11/18/2002 4:30 PM Mon 11/18/2002 5:00 PM

Show Time As:

Tentative

Recurrence:

(none)

Meeting Status:

Not yet responded

Required Attendees:

Michael Herrera

----Original Appointment----

From:

Carmen Ng-Castro

Sent:

Monday, November 18, 2002 12:29 PM

To:

Emil Moncivais; Florencio Pena; Roderick Sanchez; Richard De La Cruz; Tom Shute; Michael Herrera

Subject:

Meeting w/Florencio Pena, Rod Sanchez, Richard DeLaCruz, Tom Shute and Michael Herrera to discuss Continental Homes Issues

When:

Monday, November 18, 2002 4:30 PM-5:00 PM (GMT-06:00) Central Time (US & Canada).

Where:

Municipal Plaza Bldg., 3rd Floor Conference Room

Subject:

FW: Meeting w/Tim Pruski to discuss Stuben Estates Vested Rights

Location:

3rd Fl. Conf. Rm.

Start: End: Tue 11/26/2002 3:30 PM Tue 11/26/2002 4:30 PM

Show Time As:

Tentative

Recurrence:

(none)

Meeting Status:

Not yet responded

Required Attendees:

Michael Herrera

----Original Appointment----

From:

Carmen Ng-Castro

Sent:

Tuesday, November 26, 2002 1:55 PM

To:

Michael Herrera

Subject:

Meeting w/Tim Pruski to discuss Stuben Estates Vested Rights

When:

Tuesday, November 26, 2002 3:30 PM-4:30 PM (GMT-06:00) Central Time (US & Canada).

Where:

3rd Fl. Conf. Rm.

Subject: Location: FW: Mtg w/Tim Pruski of Continental Homes and Bob Optiz to discuss Steubing Ranch

3rd Floor Conf. Rm.

Start:

Tue 2/11/2003 1:15 PM Tue 2/11/2003 2:00 PM

End: Show Time As:

Tentative

Recurrence:

(none)

Meeting Status:

Not yet responded

Required Attendees:

Michael Herrera

----Original Appointment----

From:

Carmen Ng-Castro

Sent:

Friday, February 07, 2003 8:36 AM

To:

Robert Opitz

Subject:

Mtg w/Tim Pruski of Continental Homes and Bob Optiz to discuss Steubing Ranch

When:

Tuesday, February 11, 2003 1:15 PM-2:00 PM (GMT-06:00) Central Time (US & Canada).

Where:

3rd Floor Conf. Rm.

Housing Development Manager, met with David Earl, Harry Hausman, Sherry Moiser, & Lance Elliott regarding two of their TIF projects (Hunters Pond & Heather Cove). Hunters Pond is currently situated in the limited purpose annexation area. In order for a TIF application to be processed, the proposed development must be located within the City limits. Realizing this, Harry Hausman & HLH Management submitted a Petition for Annexation Pursuant to Section 43.028 of the Texas Local Government Code (Voluntary Annexation) on August 20, 2002 in order to pursue a TIF development. It is our understanding that the petition is with your department and we are seeking the status of the petition so that we may make a determination regarding their TIF application. Is the petition with your department? What is the process of approving or not approving their request? How long will it take to make a decision? Is there any chance that this petition receive a favorable response? These and other questions are going to be vital in determining whether we pursue the next step of the TIF application process with Hunters Pond. We committed to them that we would get back to them with a status on their petition within 10 working days. Your help is greatly appreciated. Thanks.

Adrian Lopez Special Projects Coordinator Tax Increment Financing Unit (TIF) 1400 S. Flores San Antonio, TX 78204 210-207-7805

CITY OF SAN ANTONIO MAYOR & CITY COUNCIL OFFICES

P.O. BOX 839966

MAYOR ED GARZA	207-7060	MAYOR'S FAX	207-4168
Teresa Vasquez-Romero, Asst. to Mayor	207-7067	David Espinosa, Admin. Asst.	207-2280
Leilah Powell, Asst. to Mayor	207-6566	Constituent Office: 1344 S. Flores, 78204	207 0070
Amelia Ramirez, Senior Exec. Scheduling	207-7069 207-7107	Stephen Schauer, Assistant	207-8979
Tina Blanco, Senior Exec. Correspondence Melissa Cabello-Havrda, Admin. Asst.	207-7107	JoAnn Wolaver, Assistant	207-8979
		*************	*******
DISTRICT 1 - COUNCILMAN BOBBY PER	EZ	DISTRICT 6 - COUNCILMAN ENRIQUE BA	ARRERA
Lisa Juarez, Senior Exec. Sec.	207-7279	Julia "JD" Ellison, Senior Exec. Sec.	207-7065
Mark Merlo, Admin. Asst.	207-7112	Michael DeNuccio, Admin. Asst.	207-2127
Cecilia Rodriguez, Admin. Asst.	207-7112	Constituent Office: 7121 Hwy 90 W., Ste.	
Constituent Office: 2321 Vance Jackson, 7		Joe Frank Picazo, Admin. Asst.	679-6506
Melissa Coulter, Admin. Asst.	738-8655		
Ivan Melchor, Admin. Asst.	738-8655		
DISTRICT 2 – COUNCILMAN JOHN H. SA		DISTRICT 7 – COUNCILMAN JULIÁN CAS	
Gloria Lewis, Senior Exec. Sec.	207-7278 207-2122	Patti Puente, Senior Exec. Sec. Jessica Arevalo, Admin. Asst.	207-7044 207-4052
Sheila McNeil, Admin. Asst. Constituent Office: 4458 E. Houston, 7822		Mariessa Sanchez, Admin. Asst.	207-2727
Pinkie Williams, Admin. Asst.	359-8097	Jennifer Cantu, Admin. Asst.	207-2727
Bernard Murphy, Admin. Asst.	359-8097	Constituent Office: 4415 Piedras Dr. W., St.	
		Vivian Mangold, Admin. Asst.	682-2723
		Howard Mangold, Admin. Asst.	682-2723
DISTRICT 3 – COUNCILWOMAN TONI M	OORHOUSE	DISTRICT 8 – COUNCILWOMAN BONNIE CONNER	
Diana Garza, Senior Exec. Sec.	207-7064	Ana Galindo, Senior Exec. Sec.	207-7086
Laura Cabanilla-Cruz, Admin. Asst.	207-7066	Walter Ague, Admin. Asst.	207-7086
Constituent Office: 4100 S. New Braunfels,		Janice Smith, Admin. Asst.	207-2888
Stephanie Gegenbacher, Admin. Asst.	534-1300	Leroy Alloway, Admin. Asst.	207-2888
Rebecca McNight, Admin. Asst.	534-1300	Constituent Office: 4204 Gardendale, Ste. 2	
Tim Salas, Admin. Asst.	534-1300	Ed Chandler, Admin. Asst.	692-0463
DISTRICT 4 - COUNCILMAN ENRIQU		DISTRICT 9 – COUNCILMAN CARROLL W	
Deborah Hosey, Senior Exec. Sec.	207-7281	Jackie Bolds, Senior Exec. Sec.	207-7325
John Delgado, Admin. Asst.	207-7058/922-3874	Leslie Zavala, Admin. Asst.	207-4028
Constituent Office: 333 Valley Hi Drive, Ste		Paul Miller, Admin. Asst. Constituent Office: 900 Isom Rd., Ste. 102,	207-7325
Mario Hune, Admin. Asst. Constituent Office: 2310 SW Military, Ste	678-0044 310 78224	Nicole Fowles, Admin. Asst.	341-2390
Eloy Laque, Admin. Asst.	922-3874	Nicole Fowles, Admin. Asse.	311 2330
Zio / Zaquo / / tallillin / Joseph			
DISTRICT 5 – COUNCILWOMAN NORA X	HERRERA	DISTRICT 10 – COUNCILMAN DAVID CARPENTER	
Victoria Salazar, Senior Exec. Sec.	207-7043	Molly Lendman, Senior Exec. Sec.	207-7276
Laura Barberena, Admin. Asst.	207-7015	Paul Fox, Admin. Asst.	207-7063
Judy Rodriguez, Admin. Asst.	207-7085	Constituent Office: 4169 Naco Perrin, 7821.	
Constituent Office: 1408 El Paso, 78207	207-7003	Donna Williamson, Admin. Asst.	590-7184
Gloria Rodriguez, Admin. Asst.	212-2275	Elaine Mederos, Admin. Asst.	590-7184
		Laura Grau, Admin. Asst.	590-7184
		Dorothy Rawe, Admin. Asst.	590-7184

Gayle McDaniel, Asst to the City Council	207-7041	FAX FOR COUNCIL OFFICE	207-7027
Jenny De Leon, Admin. Asst. I	207-7041		
Pat Campos, Sr. Customer Service Rep.	207-7040		

From:

Michael Herrera

Sent:

Wednesday, October 30, 2002 4:29 PM

To:

Tom Shute

Cc: Subject: Robert Opitz: Richard De La Cruz: Emil Moncivais RE: Stuebing Estates POADP #539, VRP # 02-02-071

How about this Friday 11/1/02 8:30 AM, I'm not having an MDP meeting but everyone should be available. 3rd Floor, Conf. Rm.?

Michael H

----Original Message----

From:

Tom Shute

Sent:

Wednesday, October 30, 2002 4:19 PM

To:

Michael Herrera

Cc:

Robert Opitz; Richard De La Cruz; Emil Moncivais

Subject:

RE: Stuebing Estates POADP #539, VRP # 02-02-071

What I said that morning is that vested rights run and end with a project, and the date the rights vest is the date the first application to begin that project is filed. Each case will be unique so no blanket procedure for evaluation and determination is possible. As the application may be for a permit or for a plat or for something else, the city will have to examine each vested rights claim individually. When a project ends and how far it and its rights extend also must be determined on a case-by-case basis.

As for this specific case, I suggest we set up a meeting of city staff to review what the developer is claiming.

Tom Shute

Assistant City Attorney City of San Antonio TShute@SanAntonio.gov 210-207-8954 fax 210-207-4004

This message is intended to further the provision of legal services. In most cases it is protected by the attorney-client privilege. If you have received it in error, please notify me of the error and destroy this copy.

-Original Message-

From:

Michael Herrera

Sent:

Wednesday, October 30, 2002 3:46 PM

To:

Tom Shute

Robert Opitz: Richard De La Cruz; Emil Moncivais Subject: RE: Stuebing Estates POADP #539, VRP # 02-02-071

Tom, we need the explanation on Vested Rights that you gave last Friday at the MDP meeting in writing. Second this involves POADP # 539 Steubing Estates which at one time had been purged but after your meeting with Habib it was determined that it was valid.

Third the POADP shows Knollcreek which is on the Major Thoroughfare Plan and the Developer does not want to comply.

Fourth and final point the reason some of the plats were denied is they enter and exit of Knollcreek. We have not received any plat submittal for this PUBLIC road, in other words the engineer is pushing for us to approve land lock units for this development.

The Developer is doing this because of (his) interpretation or understanding of Vested Rights, that's why we need your Legal Written Opinion.

If you have any questions please call xt-77038

Michael O. Herrera,

Special Projects Coordinator Comprehensive Division Planning Department

----Original Message----

From:

Tom Shute

Sent:

Wednesday, October 30, 2002 2:43 PM

To: Michael Herrera

Subject:

RE: Stuebing Estates POADP #539, VRP # 02-02-071

What is this all about?

Tom Shute

Assistant City Attorney City of San Antonio TShute@SanAntonio.gov 210-207-8954 fax 210-207-4004

This message is intended to further the provision of legal services. In most cases it is protected by the attorney-client privilege. If you have received it in error, please notify me of the error and destroy this copy.

----Original Message----

From:

Michael Herrera

Sent:

Wednesday, October 30, 2002 2:33 PM

To:

Tom Shute

Cc: Subject: Robert Opitz; Richard De La Cruz; 'Wright, Lee' RE: Stuebing Estates POADP #539, VRP # 02-02-071

Tom, I'm forwarding this message to you please respond.

Thanks
Michael O. Herrera,
Special Projects Coordinator
Comprehensive Division
Planning Department

----Original Message-----From: Richard De La Cruz

Sent: Wednesday, October 30, 2002 11:22 AM

To: 'Wright, Lee'

Cc: Robert Opitz; Michael Herrera

Subject: RE: Stuebing Estates POADP #539, VRP # 02-02-071

I need a letter from COSA Attorneys stating that vested rights exists and no TIA is required. The last I heard from our legal department is that if the usage of the property changes than the property is no longer vested. I do not want to be responsible for approving anything, when this issue is so unclear. I feel the best way for this issue to be resolved is to get both attorney's in the same room to come to some type of an agreement. I agree at this meeting many issues were discussed, however, none of the issues were resolved and or agreed upon.

Thanks.

Richard L. De La Cruz

----Original Message-----

From: Wright, Lee [mailto:lee.wright@tcb.aecom.com]

Sent: Wednesday, October 30, 2002 10:53 AM

To: Michael Herrera; Richard De La Cruz; Emil Moncivais

Cc: Peck, George; tpruski@drhorton.com; herkan@earlandbrown.com

Subject: Stuebing Estates POADP #539, VRP # 02-02-071

On September 26, 2002 a meeting was held in a City of San Antonio conference

room attended by the following:

Tim Pruski, Chris Martinez (Continental Homes), Habib Erkan, attorney for Continental Homes (Earl & Brown), George Peck, Lee Wright (W.F. Castella), Michael Herrera, Richard De La Cruz, Ernest Brown, Todd Sang, (City of San Antonio). The purpose of this meeting was to establish the validity of above referenced POADP and the associated Vested Rights Permit. To date we have not received a Planning Letter of Certification for Stuebing Ranch Subdivision Units 1-4. Also from a conversation between Javier Villafana and Richard De La Cruz on October 29, 2002 it appears that City is awaiting written verification re: Vested Rights. Are we to understand that validity of POADP and Vested Rights are still in question? We left the meeting feeling that these issues had been resolved and we would be allowed to proceed without delay. Is there some further correspondance or meeting required?

Lee Wright W.F. Castella & Associates 6800 Park Ten Blvd, Suite 180s (210) 296-2139 wrightl@tcbsa.com

Tracking:

Recipient

Tom Shute

Robert Opitz

Richard De La Cruz

Emil Moncivais

Read

Read: 10/31/2002 10:02 AM Read: 10/31/2002 8:07 AM

Read: 10/31/2002 11:19 AM

Read: 10/31/2002 7:58 AM

To: Subject: Wright, Lee

RE: Stuebing Ranch Unit 1, I.D. # 020246

Lee, I'm trying to set up a meeting with everyone that was at the original meeting regarding this project. As I explained to you there are some serious misperceptions by your client as to what he is exactly vested for in regards to land use. the original POADP # 539 indentifies 152.6 mining operations

----Original Message----

From: Wright, Lee [mailto:lee.wright@tcb.aecom.com]

Sent: Friday, November 15, 2002 3:27 PM

To: Michael Herrera

Cc: Peck, George; Crowell, Brian; tpruski@drhorton.com; Emil Moncivais

Subject: Stuebing Ranch Unit 1, I.D. # 020246

Mike,

I am trying to finalize Stuebing Ranch Unit 1 Plat Package for final approval and do not have your letter of Certification. Is there something that you need to release LOC?

Thank you,

Lee Wright
W.F. Castella & Associates
6800 Park Ten Blvd, Suite 180s
(210) 296-2139
wrightl@tcbsa.com

From:

Michael Herrera

Sent:

Tuesday, October 22, 2002 4:41 PM

To:

Carmen Ng-Castro; Emil Moncivais; Tom Shute

Cc:

Richard De La Cruz

Subject:

RE: Meeting w/Ken Brown of Earl and Brown RE: Indian Springs and Rogers Ranch

Tom, this is in regards to Vested Rights and what that means exactly.

COPY OF YOUR REPLY:

Let's aim for tomorrow. I am out today (though trying to get as much done as possible from home.)

Thanks.

----Original Message-----From: Michael Herrera

Sent: Mon 10/21/2002 7:44 AM

To: Tom Shute

Cc:

Subject: RE: Vested Rights Applications

Tom, I can meet with you this afternoon at 3:30 pm or tomorrow 10/22/02.

Michael H.

----Original Message----

From: Tom Shute

Sent: Friday, October 18, 2002 9:25 AM

To: Michael Herrera

Subject: Vested Rights Applications

Mike,

I am seeing that there is a gross misconception in the development community as to what are vested rights and what establishes them. I think part of the problem is the application itself as it does not require the applicant to state the name and nature of the project and the date the applicant claims the first application for that project was filed.

Can we meet sometime next week to perhaps revamp the application?

Tom Shute

Assistant City Attorney City of San Antonio TShute@SanAntonio.gov 210-207-8954 fax 210-207-4004

This message is intended to further the provision of legal services. In most cases it is protected by the attorney-client privilege. If you have received it in error, please notify me of the error and destroy this copy.

----Original Message----

From:

Carmen Ng-Castro

Sent:

Tuesday, October 22, 2002 3:17 PM

To:

Michael Herrera

Subject:

FW: Meeting w/Ken Brown of Earl and Brown RE: Indian Springs and Rogers Ranch

FYI:

Michael.

Can you provide Tom Shute with the information he needs regarding this meeting?

----Original Message----

From:

Tom Shute

Sent: To:

Tuesday, October 22, 2002 3:14 PM Emil Moncivais; Carmen Ng-Castro

Subject:

Meeting w/Ken Brown of Earl and Brown RE: Indian Springs and Rogers Ranch

I do not do well with meetings scheduled for which no information or statement of purpose is provided. Why are we meeting and what is the issue? I would appreciate meeting with you/staff sometime BEFORE we are thrust into meeting with opposing council.

Tom Shute

Assistant City Attorney City of San Antonio TShute@SanAntonio.gov 210-207-8954 fax 210-207-4004

This message is intended to further the provision of legal services. In most cases it is protected by the attorney-client privilege. If you have received it in error, please notify me of the error and destroy this copy.

Tracking:

Recipient

Carmen Ng-Castro

Emil Moncivais

Tom Shute

Richard De La Cruz

Read

Read: 10/23/2002 7:29 AM

Deleted: 10/24/2002 12:03 PM

Read: 10/23/2002 9:12 AM

Read: 10/23/2002 6:40 AM

From:

Michael Herrera

Sent:

Tuesday, October 22, 2002 8:45 AM

To:

David Rodriguez (Planning)

Subject:

Restoring POADP 539

David, we will need to restore Purged POADP 539. There was a legal opinion given to purged the POADP but was later retracted.

Let me know if you need any information from me.

Michael H.

Tracking:

Recipient

David Rodriguez (Planning)

Read

Read: 10/22/2002 10:14 AM

Special Projects Coordinator Comprehensive Division Planning Department

----Original Message----From: Richard De La Cruz

Sent: Wednesday, October 30, 2002 11:22 AM

To: 'Wright, Lee'

Cc: Robert Opitz; Michael Herrera

Subject: RE: Stuebing Estates POADP #539, VRP # 02-02-071

I need a letter from COSA Attorneys stating that vested rights exists and no TIA is required. The last I heard from our legal department is that if the usage of the property changes than the property is no longer vested. I do not want to be responsible for approving anything, when this issue is so unclear. I feel the best way for this issue to be resolved is to get both attorney's in the same room to come to some type of an agreement. I agree at this meeting many issues were discussed, however, none of the issues were resolved and or agreed upon.

Thanks, Richard L. De La Cruz

----Original Message----

From: Wright, Lee [mailto:lee.wright@tcb.aecom.com]

Sent: Wednesday, October 30, 2002 10:53 AM

To: Michael Herrera; Richard De La Cruz; Emil Moncivais

Cc: Peck, George; tpruski@drhorton.com; herkan@earlandbrown.com

Subject: Stuebing Estates POADP #539, VRP # 02-02-071

On September 26, 2002 a meeting was held in a City of San Antonio conference room attended by the following:

Tim Pruski, Chris Martinez (Continental Homes), Habib Erkan, attorney for Continental Homes (Earl & Brown), George Peck, Lee Wright (W.F. Castella), Michael Herrera, Richard De La Cruz, Ernest Brown, Todd Sang, (City of San Antonio). The purpose of this meeting was to establish the validity of above referenced POADP and the associated Vested Rights Permit. To date we have not received a Planning Letter of Certification for Stuebing Ranch Subdivision Units 1-4. Also from a conversation between Javier Villafana and Richard De La Cruz on October 29, 2002 it appears that City is awaiting written verification re: Vested Rights. Are we to understand that validity of POADP and Vested Rights are still in question? We left the meeting feeling that these issues had been resolved and we would be allowed to proceed without delay. Is there some further correspondance or meeting required?

Lee Wright W.F. Castella & Associates 6800 Park Ten Blvd, Suite 180s (210) 296-2139 wrightl@tcbsa.com

Tracking:

Recipient

Todd Sang

Read

Read: 10/31/2002 8:11 AM

Michael Herrera

From:

Michael Herrera

Sent:

Wednesday, October 30, 2002 4:02 PM

To:

Todd Sang

Subject:

FW: Stuebing Estates POADP #539, VRP # 02-02-071

----Original Message-

From:

Michael Herrera

Sent:

Wednesday, October 30, 2002 3:46 PM

To:

Cc:

Robert Opitz; Richard De La Cruz; Emil Moncivais

Subject:

RE: Stuebing Estates POADP #539, VRP # 02-02-071

Tom, we need the explanation on Vested Rights that you gave last Friday at the MDP meeting in writing. Second this involves POADP # 539 Steubing Estates which at one time had been purged but after your meeting with Habib it was determined that it was valid.

Third the POADP shows Knollcreek which is on the Major Thoroughfare Plan and the Developer does not want to

Fourth and final point the reason some of the plats were denied is they enter and exit of Knollcreek. We have not received any plat submittal for this PUBLIC road, in other words the engineer is pushing for us to approve land lock units for this development.

The Developer is doing this because of (his) interpretation or understanding of Vested Rights, that's why we need your Legal Written Opinion.

If you have any questions please call xt-77038

Michael O. Herrera,

Special Projects Coordinator

Comprehensive Division Planning Department

----Original Message-----

From:

Tom Shute

Sent:

Wednesday, October 30, 2002 2:43 PM

To:

Michael Herrera

Subject:

RE: Stuebing Estates POADP #539, VRP # 02-02-071

What is this all about?

Tom Shute

Assistant City Attorney City of San Antonio TShute@SanAntonio.gov 210-207-8954 fax 210-207-4004

This message is intended to further the provision of legal services. In most cases it is protected by the attorney-client privilege. If you have received it in error, please notify me of the error and destroy this copy.

----Original Message--

Michael Herrera From:

Wednesday, October 30, 2002 2:33 PM Sent:

To:

Tom Shute

Robert Opitz; Richard De La Cruz; 'Wright, Lee' Subject: RE: Stuebing Estates POADP #539, VRP # 02-02-071

Tom, I'm forwarding this message to you please respond.

Thanks

Michael O. Herrera,

Michael Herrera

From:

Michael Herrera

Sent:

Monday, July 01, 2002 7:48 AM

To:

Lee Wright (E-mail)

Subject:

Plat Filing

Lee, as per your request here is the leal opinion on what a plat filing is.

This is from the Local Governm...

Please note that your project "Stuebing Ranch" will need a Master Development Plan (MDP) before any plats are approved.

If you have any other questions please call me @ 207-7038.

Michael O. Herrera, Senior Planner

Planning Department Comprehensive Division This is from the Local Government Code. The provision you need is underlined.

- § 212.004. Plat Required
- (b) To be recorded, the plat must:
- (1) describe the subdivision by metes and bounds;
- (2) locate the subdivision with respect to a corner of the survey or tract or an original corner of the original survey of which it is a part; and
 - (3) state the dimensions of the subdivision and of each street, alley, square, park, or other part of the tract intended to be dedicated to public use or for the use of purchasers or owners of lots fronting on or adjacent to the street, alley, square, park, or other part.
 - (c) The owner or proprietor of the tract or the owner's or proprietor's agent must acknowledge the plat in the manner required for the acknowledgment of deeds.
 - (d) The plat must be filed and recorded with the county clerk of the county in which the tract is located.
 - (e) The plat is subject to the filing and recording provisions of Section 12.002, Property Code.

Tom Shute
Assistant City Attorney
City of San Antonio
TShute@SanAntonio.gov
210-207-8954
fax 210-207-4004

This message is intended to further the provision of legal services. In most cases it is protected by the attorney-client privilege. If you have received it in error, please notify me of the error and destroy this copy.

Michael Herrera

Kart

From:

Richard De La Cruz

Sent: To:

Wednesday, December 18, 2002 8:50 AM

Michael Herrera

Subject:

FW: MEETING ON 12/12/02

Estel Kan

FYI - I was not in attendance at this meeting.

----Original Message----

From: Peck, George [mailto:george.peck@tcb.aecom.com]

Sent: Monday, December 16, 2002 5:31 PM

To: Tim Pruski (E-mail); Robert Opitz; Christi Tanner; Richard De La

Cruz; cmartinez@continentalhomes.com

Cc: Brown, David; Wright, Lee Subject: MEETING ON 12/12/02

Tim,

During the meeting on 12/12/02 at the City of San Antonio that was attended by Bob Opitz, Tim Pruski, John Krause, Christy Tanner, Richard De La Cruz, David Brown and myself the following items were discussed.

1. The city will be setting up a meeting between Pape Dawson, the Northeast Independent School District, Bob Opitz, Richard De La Cruz and John

to discuss placement and number of left turn lanes required off of the

future extension of Knollcreek to the school site. The current plan provided

by John Krause with Pape Dawson Engineers shows 4 turn lanes. Once this meeting occurs and the location and number of turn lanes is decided, WFC will modify Knollcreek plans as necessary.

2. WFC to design and Continental Homes to build the interceptor channel between Stuebing Ranch Unit 4 and the school site. The channel will be constructed along the entire length of the common line between the school

and Unit 4 and will be designed to convey the 25 year storm + applicable freeboard.

3. The City of San Antonio will sign the Stuebing Ranch Unit 4 subdivision

plat because of the need for additional "wedge" shaped easements adjacent to

the existing 100' utility easements that extend across the park area to the

south of Stuebing Ranch.

4. WFC to label the school plat I.D. number etc. as part of the adjoiner designation on the subdivision plat.

5. WFC to verify that Mike Herrera has released POADP issue/ vested rights issue for the entire Stuebing Ranch Subdivision.

Please let me know if there are additional items that need to be addressed as a result of this meeting.

George W. Peck, P.E. W.F. Castella & Associates, Inc.

Michael Herrera

From:

Michael Herrera

Sent:

Monday, July 01, 2002 7:48 AM

To:

Lee Wright (E-mail)

Subject:

Plat Filing

Lee, as per your request here is the leal opinion on what a plat filing is.

This is from the Local Governm...

Please note that your project "Stuebing Ranch" will need a Master Development Plan (MDP) before any plats are approved.

If you have any other questions please call me @ 207-7038.

Michael O. Herrera, Senior Planner Planning Department

Comprehensive Division

This is from the Local Government Code. The provision you need is underlined.

- § 212.004. Plat Required
- (b) To be recorded, the plat must:
- (1) describe the subdivision by metes and bounds;
- (2) locate the subdivision with respect to a corner of the survey or tract or an original corner of the original survey of which it is a part; and
- (3) state the dimensions of the subdivision and of each street, alley, square, park, or other part of the tract intended to be dedicated to public use or for the use of purchasers or owners of lots fronting on or adjacent to the street, alley, square, park, or other part.
- (c) The owner or proprietor of the tract or the owner's or proprietor's agent must acknowledge the plat in the manner required for the acknowledgment of deeds.
- (d) The plat must be filed and recorded with the county clerk of the county in which the tract is located.
- (e) The plat is subject to the filing and recording provisions of Section 12.002, Property Code.

Tom Shute
Assistant City Attorney
City of San Antonio
TShute@SanAntonio.gov
210-207-8954
fax 210-207-4004

This message is intended to further the provision of legal services. In most cases it is protected by the attorney-client privilege. If you have received it in error, please notify me of the error and destroy this copy.

Michael Herrera

Subject:

FW: Meeting w/Tim Pruski to discuss Stuben Estates Vested Rights

Location:

3rd Fl. Conf. Rm.

Start: End: Tue 11/26/2002 3:30 PM Tue 11/26/2002 4:30 PM

Show Time As:

Tentative

Recurrence:

(none)

Meeting Status:

Not yet responded

Required Attendees:

Michael Herrera

----Original Appointment----

From:

Carmen Ng-Castro

Sent:

Tuesday, November 26, 2002 1:55 PM

To:

Michael Herrera

Subject:

Meeting w/Tim Pruski to discuss Stuben Estates Vested Rights

When:

Tuesday, November 26, 2002 3:30 PM-4:30 PM (GMT-06:00) Central Time (US & Canada).

Where:

3rd Fl. Conf. Rm.

TRANSMITTAL CITY OF SAN ANTONIO LETTER DEPARTMENT OF PLANNING

02 JUN 20 AM 11: 58 02 JUN 18 PM 2: 56

A T.C.B. INC., CO.

W F CAS	TFIIA & AS	SSOCIATES, INC.		
		VEYORS PLANNERS SER	DEVELORMEI VICES DIVISIO	NI .
COOO Dark	Tan Divisi	VETORS, PLANNERS	AIRES DIAISID	Date: June 18, 2002
		Suite 180 S., San Antonio, Texas 782	:13	
(210) 734-	5351	FAX (210) 734-5363		
			Project No.:	35246899.00
To:	Planning [Department	T/LC:	90916
	Mike Herr		100.00	
	WINCE FICE	era	Re:	Stuebing Ranch Unit 1,I.D. 020246
	-			Back up Data for POADP 539
WE ARE S	SENDING Y	OU ATTACHED UNDER SEPARATE	COVER VIA	THE FOLLOWING ITEMS
Prints		. Sepias Films		
Copy of le		Change Order Invoices	, opcomoduo	
. 000) 01.10		. Shange Graci , involces		
	Copies			
Sets	Per Set	Description		
1	1 18X24			
1	2 8.5X11	1.7		
-	2 0.0/(11	ODO SCOTIONIS		
	9			
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
THESE AS	E TOANON	ALTED		
THESE AR	E TRANSIV	IITTED as checked below:		
✓ For you	r approval	. Approved as submitted	. Resubmit _	_ copies for approval
For your u	se	. Approved as noted	Submit c	copies for distribution
As reques		Returned for corrections		orrected prints
	and comm		. return c	offected prints
		1,50	- DDINTO DE	TUDNED AFTER LOAN TO US
FOR BID	JUE	20	PRINTS RE	TURNED AFTER LOAN TO US
REMARKS:				
H				
			·	
COPY TO:				Thank you,
REC. BY:				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DATE:			SIGNED:	1 61 h
			OIGINED.	Lee Wright
				LEE VVIIIIII

TRANSMITTAL

CITY OF SAETHTER DEPARTMENT OF PLANNING

A T.C.B. INC., CO.

03 APR -4 PM 2: 24

ENC	GINE	ERS · S	A & ASSOURVEYORS	• PLAN	NERS						
6800	Park) (2	k Ten Blvd., S 210) 734-535	Suite 180 S. • Sa 1 FAX (210	an Antonio,)) 734-5363	Texas 78213			Date: _	April 4, 2	2003	
To:	Mike	e Herrera - 3r	d Floor		Project No.:	05224	7038.00	Task	c: 0034	GLC:	090916
	CIT	Y OF SAN A	OINOTV		Re: STEU	BING	RANCH S/	D			
	P.O	. BOX 83996	6								
	San	Antonio, Tex	as 78283-3966								
WEA	ARE S	SENDING YO	DU 🗸 ATTACHE	ED 🗆 UND	ER SEPARATI	E COVE	ER VIA		THI	E FOLLOW	ING ITEMS
□ Pri			□ Sepias		□ Films		□ Tracin			Specificati	
□ Co	py of	Letter	☐ Change Ord	der (☐ Invoices						
SE	TS	COPIES PER SET				DECO	DIRTION				, ž
8		1	DEVISED ON	DDI EMENI	T TO THE OTE	A	RIPTION		8		
			Service Control		T TO THE STE	UBING	ESTATE	POADP	# 539 SF	IOWING TH	łE.
		10000	PROPOSED	CIRCULAT	ION SYSTEM	Senting.					
			1								
	_										
				77. 10							
THES			TTED as check								
		For your appi For your use			ed as submitte	d				es for appro	
		As requested			ed as noted ed for correctio					for distribut	ion
		For review ar		☐ For pay		ns	□ Return			ed prints	
		FOR BID DU		□ r or pa	20					TER LOAN	
REMA	DIC				1	1		OILIC	NINED A	TER LUAI	1005
KLIVIA	ARNO	•	./	/ .			7	C	7		
					1 4	-					
COPY	TO:	File		1							
REC. I		1 110	7	4	1		~ T				
DATE:					/			HANKS	,	1 1	
f enclosu	ures are	not as noted, kind	dly notify us as once.			SIGNEI	D: W	el	ly /	Jan	cen
	LETTY GARCIA										

TRANSMITTAL LETTER

ENG	SINE	ERS · S	4 & ASSOC URVEYORS	· PLA	NNERS 🧶						
6800		Ten Blvd., S 10) 734-535	Suite 180 S. • Sa 1 FAX (210)	n Antonic 734-536	, Texas 78213 3		Da	ate:A	pril 3, 20	003	
To:		e Herrera - 3r			Project No.:	05224703	38.00	Task:	0034	GLC:	09916
	CITY	Y OF SAN AI	OINOTA		Re: STE	JBING RAN	NCH S/D				
	P.O.	Box 839966)								
	San	Antonio, Tex	as 78283-3966								
WE A	ARF S	SENDING YO	DU ✔ ATTACHE	D 🗆 UN	DER SEPARAT	E COVER \	VIA		THE	FOLLOW	/ING ITEMS.
□ Pr		SENDING IN	☐ Sepias		□ Films		☐ Tracings			Specifica	
		Letter	☐ Change Ord	ler	☐ Invoices]				
		COPIES									
SE	TS	PER SET				DESCRIP	PTION				
	8	1	SUPPLEMEN	T TO TH	E STEUBING E	STATE PO	ADP SHO	OWING	THE PR	OPOSED	
			CIRCULATIO	N SYSTE	EM						
THE	SE A	RE TRANSM	ITTED as check	ked below	<i>/</i> :						
		For your ap	proval	□Арр	roved as submit	ted	Resubm	nit	cop	ies for app	oroval
	V	For your use	е	□Арр	roved as noted				copies for distribution		
		As requeste	ed	☐ Retu	irned for correct				corrected prints		
			and comment	☐ For	payment						<u>B</u>
		FOR BID D	UE		2	20 □	□ PRINTS	RETU	RNED A	FIERT	AN TOUS
REM	1ARK	S:								= =	
											1 = S
											S SZ
										ī	· PR
COF	Y TO	:_ File									5 38
REC	BY:						TI	HANKS	,		G
DAT	E:						_)	11	- M	arre	à
If encl	osures	are not as noted,	kindly notify us as once	5		SIGNED:	: LI	ETTY/C	SARCIA	, 00 000	1 1 3

010 (1D.C.

on a monopole tower, a steel lattice tower and any self supporting communication tower which does not utilize guy wire support. This facility shall also allow as one of its components an unmanned equipment shelter.

Antenna support structures:

Monopole antenna structure. A self supporting pole type structure with no guy wire support, tapering from base to top and so designed to support fixtures which hold one or more antennas and related equipment for wireless telecommunication transmission.

Lattice antenna structure. A steel lattice, self supporting structure with no guy wire support, so designed to support fixtures which hold one or more antennas and related equipment for wireless communication transmission.

Yard: An area on a lot between the lot line and the nearest principal structure, unoccupied and unobstructed by any portion of a structure from the ground upward, except as otherwise provided in this chapter.

Zero lot line: The location of a building on a lot in such a manner that one (1) or more of the buildings sides rests directly on or immediately adjacent to the lot line.

(Ord. No. 65513, § 2(f), 8-13-87; Ord. No. 66329, Att. IV(1), 12-12-87; Ord. No. 67518, 7-21-88; Ord. No. 68978, § 1, 3-9-89; Ord. No. 68979, § 1, 3-9-89; Ord. No. 69554, § 1(1), 5-25-89; Ord. No. 69711, § 1, 6-22-89; Ord. No. 70078, Att. A, Att. B, 8-24-89; Ord. No. 71762, § I(Att. A), 6-21-90; Ord. No. 72220, § 1(Att. I, § 1), 9-6-90; Ord. No. 72724, § 2, 11-29-90; Ord. No. 73398, § 1(Att. A), 3-28-91; Ord. No. 74489, § 1(Att. I), 10-3-91; Ord. No. 74981, § 3(Att. A), 12-19-91; Ord. No. 76116, § 1(Att. I, § 10), 7-9-92; Ord. No. 76381, § 1(Att. I), 8-27-92; Ord. No. 80241, § 1(I), 5-26-94; Ord. No. 81147, § 1, 11-10-94; Ord. No. 82135, § 1, 4-27-95; Ord. No. 83930, § 1, 4-11-96; Ord. No. 86711, § 3, 9-25-97; Ord. No. 86919, § 1, 11-6-97; Ord. No. 87443, § 1, 2-26-98; Ord. No. 87907, § 1, 6-4-98)

Secs. 35-1042-35-2030. Reserved.

ARTICLE II. PLANNING

DIVISION 1. MASTER PLAN ELEMENTS AND CONFORMITY

Sec. 35-2031. Authorization.

Master plan elements are authorized under Article IX of the City Charter, Section 121. The Master Plan: "The commission may adopt the master plan as a whole or in parts, and may adopt any amendments thereto." Currently adopted master plan elements include those listed below. (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2032. Master plan policies.

The master plan policies were adopted by the planning commission as Resolution Number 97-05-01 on May 14, 1997, and by the city council as Ordinance Number 86100 on May 29, 1997. The master plan policies are intended to provide guidance in the evaluation of future decisions relevant to city planning. The master plan policies do not constitute a substantive change in existing ordinances of the city neither does it supersede nor replace the Unified Development Code or any regulatory ordinance adopted prior to the adoption of the master plan policies. Any amendment to the Unified Development Code or other regulatory ordinances made necessary in order for said regulations to be consistent with the master plan policies shall be implemented pursuant to the process prescribed in the master plan policies, in lieu of any provision of this Code in apparent contradiction.

(Ord. No. 65513, § 2(f), 8-13-87; Ord. No. 86100, § 4, 5-29-97)

Editor's note—Ordinance No. 86100, § 4, adopted May 29, 1997, amended § 35-2032 to read as herein set out. Formerly, such section pertained to basic plan.

Sec. 35-2033. Transportation Plan/Major Thoroughfare Plan.

The Transportation Plan/Major Thoroughfare Plan was adopted by Resolution Number 78-07-02 of the planning commission on July 12, 1978 and adopted as Ordinance Number 49818 by the city

^{*}Charter reference—Planning commission, § 117 et seq.

council on September 21, 1978. It contains the city's transportation policies and the areawide transportation planning process and how it relates to that of the city. (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2034. Land Use Plan.

The Land Use Plan was adopted by planning commission Resolution Number 83-05-04 on May 25, 1983 and by the city council on December 8, 1983, Ordinance Number 83-58-102. The Land Use Plan includes land use objectives and policies for six major components: natural resources; utility infrastructure; transportation corridors; urban form; regulatory measures; and annexation, public facilities and services.

(Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2035. Neighborhood Planning Process.

The Neighborhood Planning Process was adopted by the planning commission as Resolution Number 82-10-01 on October 20, 1982 and by city council Ordinance Number 57068 on June 2, 1983, for the purpose of providing a vehicle whereby neighborhood residents and property owners could organize to develop a neighborhood plan suitable for official recognition by the planning commission and the city council. Neighborhood planning teams can use this process to "...identify issues that will affect their neighborhood's future and select actions for solving (or ameliorating) problems."

(Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2036. Parks Plan.

Adopted by city council Ordinance Number 54605 on November 24, 1981, the Parks Plan was prepared as a joint effort between the department of parks and recreation and the department of planning. The Parks Plan is summarized by a single goal: "Every citizen of San Antonio should have the opportunity to avail themselves of quality parks and recreation facilities and services." (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2037. City Water Board Master Plan.

The waterworks master plan is the "Report on Master Plan for Water Works Improvements" dated September 1981 and subsequent revisions thereof. This adopted plan is implemented through the "Regulations for Water Service" adopted November 20, 1984 by the Board of Trustees, on June 12, 1985 by the city planning commission, and by Ordinance Number 60959 on June 27, 1985 by the city council. (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2038. Wastewater Facilities Plan.

The Wastewater Facilities Plan consists of sets of wastewater service policies and sewer extension policies. The SAWPAC report included policies which have been implemented; many have been written in the subdivision regulations. (Ord. No. 65513, § 2(f), 8-13-87)

Sec. 35-2039. Drainage master plans.

As the city continues to define and adopt drainage master plans for specific watersheds contained in whole or in part within the city limits and its ETJ, development will be required to conform to the elements of the plan for each particular watershed. The preservation of the inherent characteristics of natural drainage features and of the natural floodplain where practical is an adopted goal of each watershed drainage plan. The guidance for the drainage master plans was provided by the drainage regulation review committee in February 1996. The first two (2) goals stated in the report are to "Ensure that stormwater management considers and provides reasonable safety from flood hazards for people and property" and to "Integrate stormwater management with natural resource enhancement and protection, compliance with environmental regulations and with creating appropriate development." The drainage master plans developed by the city for each watershed provide long-range guidance for managing the stormwater from existing and future land uses in the most efficient ways possible, with consideration for continued development, reduced flooding potential, ade-

W.F. CASTELLA & ASSOCIATES, INC. Engineers • Surveyors • Planners

WFC Job No. 052247039.0001.000302808

To:

November 4, 2002

City of San Antonio Planning Department

Attn:

Mike Herrera

Re: Stuebing Ranch Subdivision Unit 4, I.D. # 020410

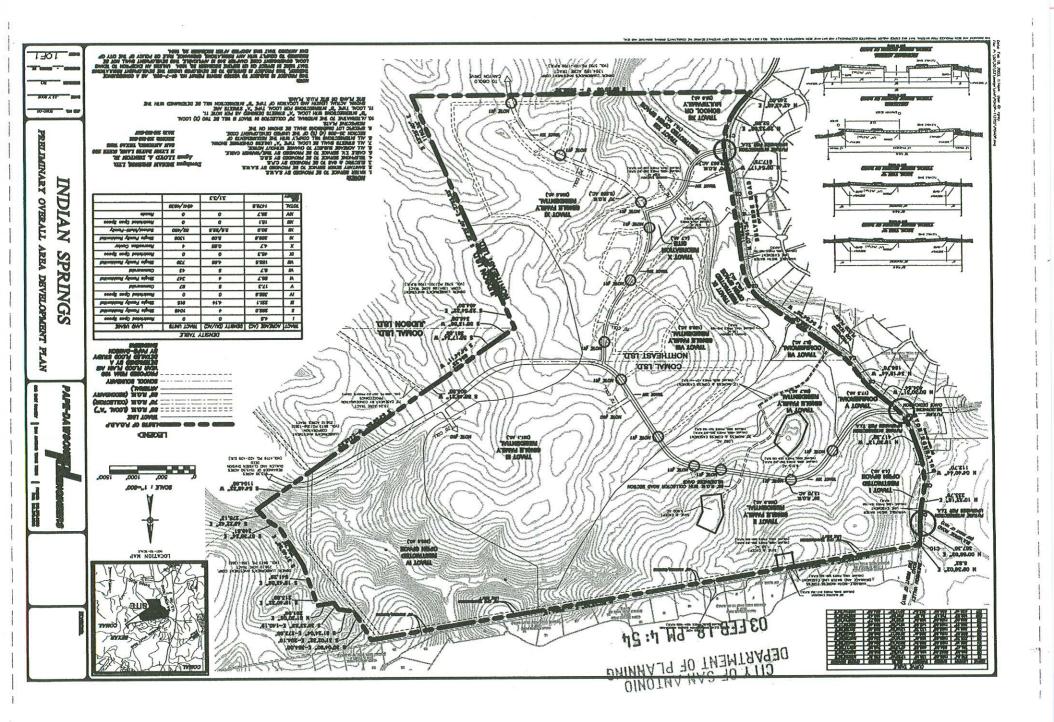
Mr. Herrera,

On behalf of the Developer, Continental Homes of Texas L.P., we hereby state that Stuebing Ranch Subdivision Unit 4, I.D. # 020410 receives access by and through the street extension of Knollcreek being platted with Stuebing Ranch Subdivision Unit 3, I.D. # 020390, therefore it is agreed that Unit 3 must be recorded prior to Unit 4. Please grant approval to referenced Stuebing Ranch Subdivision Unit 4, I.D. # 020410 based on this agreement.

Your help is appreciated,

W.F. Castella & Associates

Lee Wright


Senior Engineering Technician

02 NOV 12 PM 3: 39

DATE: 2-11-03

SIGN IN MASTER DEVELOPMENT PLAN MEETING

	NAME	ADDRESS/PHONE NO.
1.	Mark Sparrows	211 North Loop 160H 1= 55,7e130 San Antonio, TX. 78232 496-2668
2.	Bob Onto	DSD 207-7587
3.	Christi Tonner	Non
4.	Tim Pruski	CONTINENTAL MOL 110
5.	11011	140mes 496-2668
6.	INICHPIEL HERROM	6050 FO 1- 1950
7.	1 // C/JB/EC/JAN/COMA	PLANNING 7.07-1038
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		
21.		
22.		
23.		

Recommended Guidelines for Subdivision Streets

A Recommended Practice

Institute of Transportation Engineers 525 School St., S.W., Suite 410 Washington, D.C. 20024-2729 USA

1.00 Traffic Considerations in Subdivision Planning and Layout

1.01 Objectives in Subdivision Planning

The primary objective of subdivision design is to provide maximum livability. This requires a safe and efficient access and circulation system, connecting homes, schools, playgrounds, shops, and other subdivision activities for

people living there.

Transportation considerations in subdivision design may be classified in two general areas: (a) the actual layout of the streets and pedestrian systems as related to land use, and (b) the engineering dimensions for vehicular, pedestrian, and any bicycle facilities. But neither the street system nor the individual design element should be analyzed separately. They must both be considered in order to design a safe and efficient transportation system.

1.02 Application

There are four broad functional classifications of streets within urban areas, as reviewed below:

Local streets represent the lowest category. Their primary function is to serve abutting land use. Typical residential Average Daily Traffic (ADT) ranges from 100 to 1,500, with A.M. peak-hour traffic about 7 to 8 percent and P.M. peak-hour traffic about 10 percent of ADT.15

Collector streets have the primary purpose of intercepting traffic from intersecting local streets and handling this movement to the nearest major streets. A secondary function is service to abutting land use. Collector streets also may carry bus lines within a residential subdivision. ADTs are typically 1,500 to 3,500 in residential areas, with similar proportions of peak-hour traffic as for the local streets.

Major streets have the primary purpose of carrying through traffic and the secondary purpose of providing access to abutting property. ADTs are typically in excess of 3,500.

Limited access roads have the sole purpose of carrying through traffic and provide no direct access to abutting properties.

The ranges in ADT may, of course, overlap, and the above figures are not intended as design criteria.

These guidelines are limited to design characteristics of local and collector type streets in residential subdivisions. The street needs to service other types of denser uses, such as retail, office, or industrial, vary widely in operational requirements. Their design should be based upon detailed traffic analysis, which more closely approximates design procedures for major streets except for lower speeds and strong emphasis on access to abutting properties.

Special subdivisions exist for which these guidelines may only partially apply. These include mobile home parks, recreational developments, airplane landing runway or waterway-oriented developments, and cluster housing. By their nature, such subdivisions do not necessarily fit into the planning framework of the customary residential areas. The need for special design criteria, on a case-by-case basis, is recognized in most jurisdictions by the planned unit development concept.

1.03 Principles of Systems Layout

Basic principles exist that should be recognized and used in designing circulation and access systems in new residential subdivisions of conventional layout. These principles concern the design of entire street systems rather than individual elements of the system, and so express concepts rather than specific dimensions. In applying them, however, specific guidelines for pavement widths, intersection design, and related design features are desirable.

The design of local transportation systems must recognize the factors of: (a) safety - for both vehicular and pedestrian traffic, (b) efficiency of service - for all users, (c) livability or amenities - especially as affected by traffic elements in the circulation system, and (d) economy - of land use, construction, and maintenance, again as affected by or related to the circulation system.

Each of the following principles is an elaboration on one or more of these four factors. These principles are not intended as absolute criteria, since instances may occur where certain principles conflict. The principles should, therefore, be used as concepts for proper systems layout, as illustrated in

1. Adequate Vehicular and Pedestrian Access Should Be Provided to All Parcels.

The primary function of local streets is service to abutting properties. Street widths, placement of sidewalks, pattern of streets, and number of intersections are related

NORTHEAST ISD KNOLLCREEK ELEMENTARY SCHOOL

Level 2 Traffic Impact Analysis

January 2003

GILMER D. GASTON

80472

GISTERE

1/6/03

EXECUTIVE SUMMARY

Pape-Dawson Engineers, Inc., (PD) was retained by North East Independent School District to prepare a Traffic Impact Analysis for the development of a middle and elementary school in northern Bexar County, Texas. The new school's are located on the southwest corner of Judson Road and the proposed extension of Knollcreek (Ferguson MAPSCO® Map 519, Grid A4). Judson Road provides regional and direct access to the site. The study area encompasses intersections located within the study area. The key intersection within this boundary was identified as:

1) Knollcreek and Judson Rd.

The proposed development plan includes the construction of a middle and elementary school. The proposed site is located within San Antonio City Limits on property in Bexar County and consists of parcels that are zoned R5 and C2. Residential single family lots zoned R5 are characterized as medium-to high-density single family residential uses. Commercial Districts, zoned C2, are characterized as general commercial activities designed to serve the community such as repair shops, wholesale businesses, warehousing and limited retail sales. In addition, a residential neighborhood is proposed on the north and south side of Knollcreek Road adjacent to and across from the elementary school.

The purpose of this analysis is to fulfill the requirements of City of San Antonio in assessing the project's impact on the adjacent street network with specific evaluation of the intersection noted above. To meet these requirements, analyses scenarios of the proposed development included the analysis of existing conditions and build-out 2005 site traffic impacts.

The Elementary School is scheduled to open in 2004 with a projected enrollment of 600. A maximum capacity of 950 is expected to be reached by 2011. The Middle School is scheduled to open in 2005 with a projected enrollment of 1,100. A maximum capacity of 1,300 students is expected to be reached by 2011. Distribution of site traffic to the roadway network was based on existing traffic volumes, the layout of the existing roadway network, proposed attendance boundaries, and location of the project driveways.

To determine the traffic impact of the proposed development, the projected traffic conditions were analyzed. Based on these traffic conditions, the following recommendations are presented.

The following items may require some form of participation by the project developer.

- Location of the Knollcreek intersection and Judson Road should consider the existing vertical profile of Judson Road. If the intersection is left unsignalized then a minimum intersection sight distance of 385 feet north and 500 feet south of Knollcreek should be provided.
- Each driveway should include one inbound lane and two outbound lanes (one for left turns and one for right turns).

- The median opening should use the bullet nose design as described on page 701 of 2001 AASHTO Policy on Geometric Design of Highways and Streets (ASSHTO Greenbook). The small radius of the median should be 2 feet and the large radius should be 75 feet to accommodate school buses. For an assumed median width of 14 feet the minimum length of the median opening should be 96 feet.
- Elementary school may need additional space to accommodate special events for up to 300 vehicles or approximately 33% of the school attendance. All of the parking area would not necessarily need to be marked, as parking for special events often uses all available parking space, marked or not.
- Installation of a traffic signal at the intersection of Judson Road and Knollcreek.
- Recommend a left turn storage length of 230 feet for eastbound Knollcreek at Judson Road and 200 feet for northbound Judson Road at Knollcreek.
- Consideration of a traffic signal at the intersection of Knollcreek with Elementary School Driveway #1 and the new neighborhood access point to improve traffic flow in and out of the sites and to improve the safety of pedestrians and school children crossing the roadway
- Parent drop-off/pick-up area should be designed to maximize the curb space for curb side drop off. NEISD should plan to actively manage drop-off/pick-up areas to maximize vehicle efficiency.
- Driveway 2 and assumed Driveway 4 are likely to produce stacking along Knollcreek. NEISD should consider the use of "traffic supervisor(s)" or uniformed officer(s) to provide traffic control to direct drivers during peak periods.
- Consideration of a traffic signal at the intersection of Judson Road and Mountain Vista
 Drive and middle school Driveway 5 to improve traffic flow onto Judson Road.
- Incorporate traffic control improvements such as signing and pavement markings into the site plan that conform to the *Texas Manual on Uniform Traffic Control Devices* for consistent uniform traffic control.
- Provide right turn deceleration lane on southbound Judson Road at Knollcreek.
- Construct median left turn lanes along Knollcreek at each school driveway to facilitate the safe and efficient flow of traffic. Taper design should be accordance with the AASHTO Greenbook.
- NEISD should operate the elementary and middle with hours that offset the peak times between the two schools. Using existing school start and stop times, it is recommended that elementary school hours be from 7:35 am to 2:35 pm and middle school hours be from 8:30 am to 3:30 pm.

TABLE OF CONTENTS

DESCRIPTION Introduction	PAGE
Purpose	1
Study Procedure	1
Data Collection	2
Area Conditions	3
Transportation Network Study Area	3
Study Area – Adjacent Land Use	7
Projected Traffic	8
Trip Generation	8
Trip Distribution	
Traffic Analysis	28
Site Access	28
Capacity Analyses	29
Existing Conditions	32
Evaluation of Traffic Impacts	32
Key Intersection Capacity Analysis	32
Site Driveway Capacity Analysis	32
Traffic Signal Warrant Analyses	34
Recommendations	34

APPENDICES

- A City of San Antonio TIA Threshold Worksheet
- **B** Traffic Count Data and Trip Generation
- C School Boundary and Intersection Photographs
- D Capacity Analyses
- E Traffic Signal Warrant Study
- F ADT Calculation Worksheets

LIST OF FIGURES

	PAGE
Figure 1 Project Location	5
Figure 2 Existing Traffic Volumes	6
Figure 3 Global Trip Distribution	11
Figure 4 Entering Elementary School Trip Distribution	12
Figure 5 Entering Elementary School Traffic Volumes	13
Figure 6 Exiting Elementary School Trip Distribution	14
Figure 7 Exiting Elementary School Traffic Volumes	15
Figure 8 Entering Subdivision Trip Distribution	16
Figure 9 Entering Subdivision Traffic Volumes	17
Figure 10 Exiting Subdivision Trip Distribution	18
Figure 11 Exiting Subdivision Traffic Volumes	19
Figure 12 Elementary School Total Traffic Volumes (2005)	20
Figure 13 Middle School Entering Trip Distribution Total (2005)	21
Figure 14 Middle School Entering Traffic Volumes (2005)	22
Figure 15 Middle School Exiting Trip Distribution (2005)	23
Figure 16 Middle School Exiting Traffic Volumes (2005)	24
Figure 17 Entering Subdivision Traffic Volumes (2005)	25
Figure 18 Exiting Subdivision Traffic Volumes (2005)	26
Figure 19 Middle School Total Traffic Volumes (2005)	27

LIST OF TABLES

		PAGE
Table 1	Proposed Land Use Summary	7
Table 2	Trip Generation Rates for Proposed Development	9
Table 3	Site Traffic for Proposed Development	9
Table 4	Driveway Throat Length vs. Queue Length	28
Table 5	Left Turn Storage Length	29
Table 6	HCM Level of Service at Unsignalized Intersections	30
Table 7	HCM Level of Service at Signalized Intersections	31
Table 8	Key Intersection Capacity Analysis Build-out (2005)	33

INTRODUCTION

Pape-Dawson Engineers, Inc., (PD) was retained by North East Independent School District (NEISD), to prepare a Traffic Impact Analysis for the development of an elementary and middle School in northern Bexar County, Texas. In addition, a new residential subdivision will be developed adjacent to and across from the new schools. The proposed schools are located at the southwest corner of Judson Road and Knollcreek (Ferguson MAPSCO® Map 519, Grid A4). See Figures 1 and 2 for project location and site plan. The proposed residential development is primarily located north of Knollcreek and extends west to O'Connor. A smaller portion of the new subdivision is located south of Knollcreek, adjacent to the elementary school property. The proposed site is located within San Antonio City Limits in Bexar County. The elementary and middle school development are projected to be completed in 2004 and 2005 respectively.

Judson Road provides regional and direct access to the site. The study area encompasses intersections located within the study area. The future key intersection within this boundary was identified as:

1) Knollcreek and Judson Road

The proposed site consists of parcels zoned R5 and C2. Residential single family lots zoned R5 are characterized as medium-to high-density single family residential uses. Commercial Districts, zoned C2, are characterized as general commercial activities designed to serve the community such as repair shops, wholesale businesses, warehousing and limited retail sales.

PURPOSE

This study was conducted to assess the transportation impacts of the proposed development on the area thoroughfare network and to review site access and circulation, required by Sections 19-82 and 19-84 of the Code of Ordinances of the City of San Antonio. The format of this study follows the requirements listed in Section 19-83 of the Code of Ordinances. A copy of the City of San Antonio Traffic Impact Analysis Threshold Worksheet is provided in Appendix A. Purposes for traffic impact assessments are (1) to address and evaluate the project's impact on the adjacent street network, and (2) to mitigate any negative impacts of site-generated traffic on the adjacent street network.

STUDY PROCEDURE

The following information provides a summary of the field data, engineering analyses, conclusions, and recommendations related to this traffic impact assessment. This methodology is based on the analyses of the existing and projected site-generated traffic on area roadways. The following tasks were completed during the study:

- Analysis parameters were determined through discussions with the City of San Antonio staff.
- A field investigation of the roadways within the vicinity of the site was completed.

- Existing 24-hour turning movement counts were gathered in the field on May 24, 2001 and December 3, 2002.
- Using Trip Generation, Version 4, by MicrotransTM, the projected number of trips to be generated by the elementary and middle school, and neighborhood developments were estimated for both the AM and PM peak hours. Trip Generation, Version 4, by MicrotransTM, automates the use of the tabular information in the 6th Edition of *Trip Generation* produced by the Institute of Transportation Engineers. The projected number of elementary school trips were estimated using data collected from a Traffic Study for the Patricia J. Blattman Elementary School in the Northside School District in January 2002. The data from this study were also used to estimate the middle school trips,
- Trip distribution was estimated on the basis of existing and anticipated traffic patterns and the Thoroughfare Plan maintained by the City of San Antonio.
- A global trip distribution was developed based upon school boundaries. Separate distributions were developed for the elementary school and middle school based on the projected attendance boundaries.
- Entering and exiting site traffic was assigned to the site driveways and local street network using the trip distribution.
- A rough trip assignment for the Stuebing Ranch residential development was also developed for projecting traffic from the subdivision.
- Non-site (background) traffic volumes were estimated for the design year 2005. The total traffic volumes were developed by combining the estimated site-generated volumes with the projected non-site volumes.
- Capacity analyses of the studied intersection and driveways were performed for the design year 2005 when the Elementary and Middle School have been completed. For this report it is assumed that the residential subdivision is complete.
- Comparison of the capacity analyses resulted in conclusions regarding the transportation needs and impact of the development.
- Potential mitigation measures were identified and analyzed for effectiveness.
- Recommendations were prepared to enhance site circulation and mitigate negative impacts where necessary.

DATA COLLECTION

To evaluate the impact of site-generated traffic on the roadway network, it was first necessary to determine existing conditions of the study area. Traffic volume data along Judson Road was collected on May 24, 2001. Turning movement data was collected at the intersection of Judson Road and Mountain Vista Road on December 3, 2002. Traffic data are presented in **Appendix B**.

AREA CONDITIONS

The location of the elementary and middle school, and residential development is shown on **Figure 1**. The school site is located west off of Judson Rd. and south of Knollcreek Road. The residential development is located north and south of Knollcreek. The proposed developments are located within an area with very light commercial and heavy residential land uses. Traffic traveling to and from the site will use Judson Road and O'Connor Road for regional access. The study area encompasses the following key intersection:

1) Judson road and Knollcreek

TRANSPORTATION NETWORK STUDY AREA

Brief descriptions of the existing roadways that were evaluated in this study are included in the following paragraphs. The existing roadways that were evaluated in this study are (1) Judson Road. Intersection photographs and school boundary layouts are presented in **Appendix C**.

Area Roadway System

Judson Road

Judson Road is a five-lane divided Secondary Type A Arterial. The posted speed limit is 40 miles per hour in both directions between Loop 1604 and Stahl Road. The average daily traffic volume for this roadway is approximately 9,450 vehicles per day as measured in this study. The next major intersections along Judson Rd. are approximately 4,500 feet to the south at Stahl Road and approximately 1,570 feet to the north at Loop 1604.

Knollcreek

Knollcreek is new 4-lane divided Secondary Arterial Type A thoroughfare connecting Judson Road and O'Connor. The anticipated speed limit is 40 miles per hour.

Proposed Driveways

As indicated on the site plan for the proposed development, the elementary school will have two driveways located on Knollcreek (Driveway 1 & 2). The middle school will have two of the site driveways located on Knollcreek (Driveway 3 & 4) and one driveway located on Judson Road (Driveway 5). The proposed east driveway located on Judson is directly across from Mountain Vista Drive (Vista Subdivision). Driveway 1 is located directly across from the new subdivision, Stuebing Ranch, south access point and primarily serves school bus traffic and faculty parking. Driveway 2 primarily serves parent drop off traffic and administration and visitor parking. The Middle School site plan is still under development. Based on a comparable footprint Driveway 3 is expected to serve school bus and faculty parking. Driveway 4 is expected to serve parent drop-off and administration and visitor parking. Driveway 5 could provide access for school buses, faculty, and/or parent drop-off.

NEISD KNOLLCREEK ELEMENTARY SCHOOL LEVEL 2 TIA

01/03

Existing Traffic Volumes and Conditions

Traffic flow along Judson Road is relatively moderate. Turning movement count and volume data are summarized in **Figure 2**. The AM peak hour generally occurs between 7:30 and 8:30 AM and the PM peak hour generally occurs between 4:45 and 5:45 PM. Actual field data are presented in **Appendix B**.

KNOLLCREEK FIGURE I PROJECT LOCATION

PAPE-DAWSON T

REV

65 EAST RAMSEY | SAN ANTONO TEXAS 78216 | PHONE: 2

TEXAS 78216 | PHONE: 210,375,9000 FAX: 210,375,9000

EXISTING TRAFFIC VOLUMES KNOLLCREEK

NEISD KNOLLCREEK ELEMENTARY SCHOOL LEVEL 2 TIA

Area of Significant Traffic Impact

Due to the traffic volume generation initially projected by the development, a Level 2 Traffic Impact Analysis was required. A City of San Antonio Traffic Impact Analysis (TIA) Threshold Worksheet for the proposed development is presented in **Appendix A**. A Level 2 Traffic Impact Analysis (TIA) is required when a proposed development generates over five hundred (500) peak hour trips (PHT). **Figure 1** illustrates both the project site and the existing usage of the adjacent land. The following key intersection was identified for evaluation:

1) Judson Road and Knollcreek

STUDY AREA - ADJACENT LAND USE

Existing Land Uses

Currently the proposed development is located on undeveloped land.

Proposed Land Uses

The proposed land uses, for this area are as follows:

- 1) Single Family Detached Housing (ITE Code 210)
- 2) Elementary School (ITE Code 520)
- 3) Middle School/Junior High School (ITE Code 522)

The new school boundaries for the elementary and middle schools are shown in Appendix C. The proposed land uses and size for this development are summarized in Table 1 below.

Table 1 Proposed Land Use Summary									
Land Use	ITE Code	Size	Units						
Single Family Detached Housing	210	1,012	DU's*						
Elementary School	520	800	Students						
Middle School/Junior High School	522	1,250	Students						

^{*} D.U. - Dwelling Unit

NEISD KNOLLCREEK ELE*MENTARY SCHOOL* LEVEL 2 TIA

PROJECTED TRAFFIC

TRIP GENERATION

The amount of site traffic generated by the proposed development is a function of the density and type of land use. The vehicle trips generated by the proposed development were estimated using the Trip Generation Software (T-GEN) distributed by MicrotransTM. This software automates the use of trip generation tables produced by the Institute of Transportation Engineers and is considered an industry standard. The type of development (defined land use) and the corresponding development area are used to estimate the number of trips generated by the development. In particular, it is important to determine the number of entering and exiting trips during the peak hours of traffic on roadways adjacent to the site.

The trips generated during the peak hours for the site are important because these are the periods of greatest roadway congestion during the average day. By predicting the peak hour trips generated by the development, the adjacent roadway and intersection volumes after the development is completed may then be estimated. The AM and PM peak hour for Judson Road as determined by traffic counts performed were 7:00-8:00 AM and 5:00 – 6:00 PM, respectively. Elementary school start time is anticipated to be 7:30. The AM and PM peak hour for the elementary school based on a 7:30 start time and data collected from a previous elementary school Traffic Study are 7:00-8:00 AM and 2:00 – 3:00 PM, respectively. Middle school start time is anticipated to be 8:30.The AM and PM peak hour for the middle school is estimated to be 8:00-9:00 AM and 3:00 – 4:00 PM, respectively.

MicrotransTM trip generation data can be found in **Appendix B**. Resulting trip generation rates are summarized in **Table 2**. Elementary school rates are taken from the Patricia J. Blattman elementary school traffic study.

Based upon a comparison of the trip generation rates presented in ITE's *Trip Generation* the hourly and daily trip generation rates for Middle Schools are typically higher than the trip generation rates for Elementary Schools. For the proposed Middle School, we are using trip generation rates developed from data collected at two San Antonio area Elementary Schools. The resulting trip generation rate is much higher both on an hourly basis and a daily basis than the rates presented in *Trip Generation*. Rather than assume an increase in the Middle School trip generation as would be indicated by comparison of the ITE rates, we are assuming that the Middle School trip generation rate is equivalent to the Elementary School rate. The only way to determine if San Antonio Middle Schools would have a higher or lower rate than what has been assumed would be to gather traffic count data at several existing middle schools for comparison. We believe that our assumptions regarding middle school trip generation is justifiable under the existing conditions.

Single family detached housing rates for the elementary and middle school afternoon peak hours were determined from existing traffic count data along Judson Road. The weekday daily rate per vehicle was used to find the daily vehicle count and based on the hourly traffic distribution on Judson Road an hourly vehicle count was calculated. The calculations are summarized in Appendix F.

Table 2 Trip Generation Rates for Proposed Development											
		Weekday AM Weeko			day PM	Weekd	ay Daily				
Land Use (ITE Code)	Unit	Rate per Unit	In/Out Split	Rate per Unit	In/Out Split	Rate per Unit	In/Out Split				
Single Family Detached Housing(210)	DU's*	.75	25/75	1.01 ¹ .64 ² .48 ³	64/36 50/50 50/50	9.57	50/50				
Elementary School (520)**	Student	.89	56/44	.443	43/57	2.34	50/50				
Middle/Junior High School (522)**	Student	.89	57/43	.44 ²	51/49	2.34	50/50				

^{*} D.U. – Dwelling Unit

Based upon the trip generation rates from **Table 2**, the projected site traffic was calculated. **Table 3** shows the raw trips for the proposed development. 883 dwelling units were estimated for the northern portion of the neighborhood and 129 dwelling units were estimated for the southern portion. The northern portion of the neighborhood has an access point at O'Connor Road. For this report 50% of the traffic used this access point and the other 50% accessed Knollcreek.

Table 3 Site Traffic for Proposed Development									
						Daily Totals			
Land Use	ITE Code	Size	Enter	Exit	Enter	Exit			
Single Family Detached Housing	210	1012 DU's	193	566	658 ¹ 324 ² 243 ³	364 ¹ 324 ² 243 ³	9,685		
Elementary School	520	800 Students	400	312	152 ³	200^{3}	1,872		
Middle School	522	1250 Students	634	478	280 ²	270^{2}	2,925		

^{*} D.U. - Dwelling Unit

^{**} Based on trip generation data gathered from Patricia J. Blattman Elementary School traffic study.

^{1 - 4-6} PM (per ITE)

²⁻³⁻⁴ PM projected rate

^{3 – 2-4} PM projected rate

 $^{1 - 4 - 6 \}text{ PM}$

^{2 - 3 - 4} PM

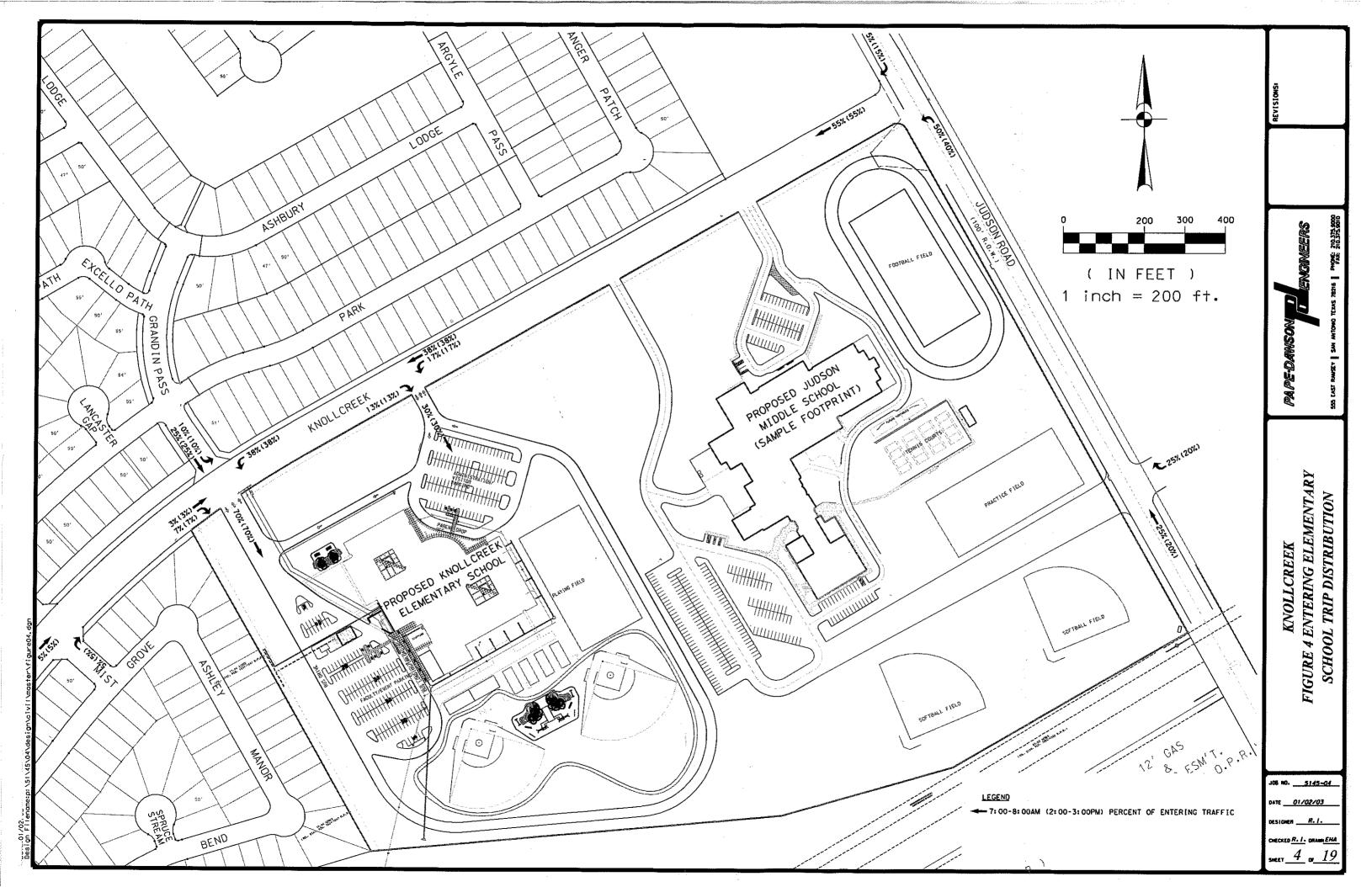
³⁻²⁻⁴ PM

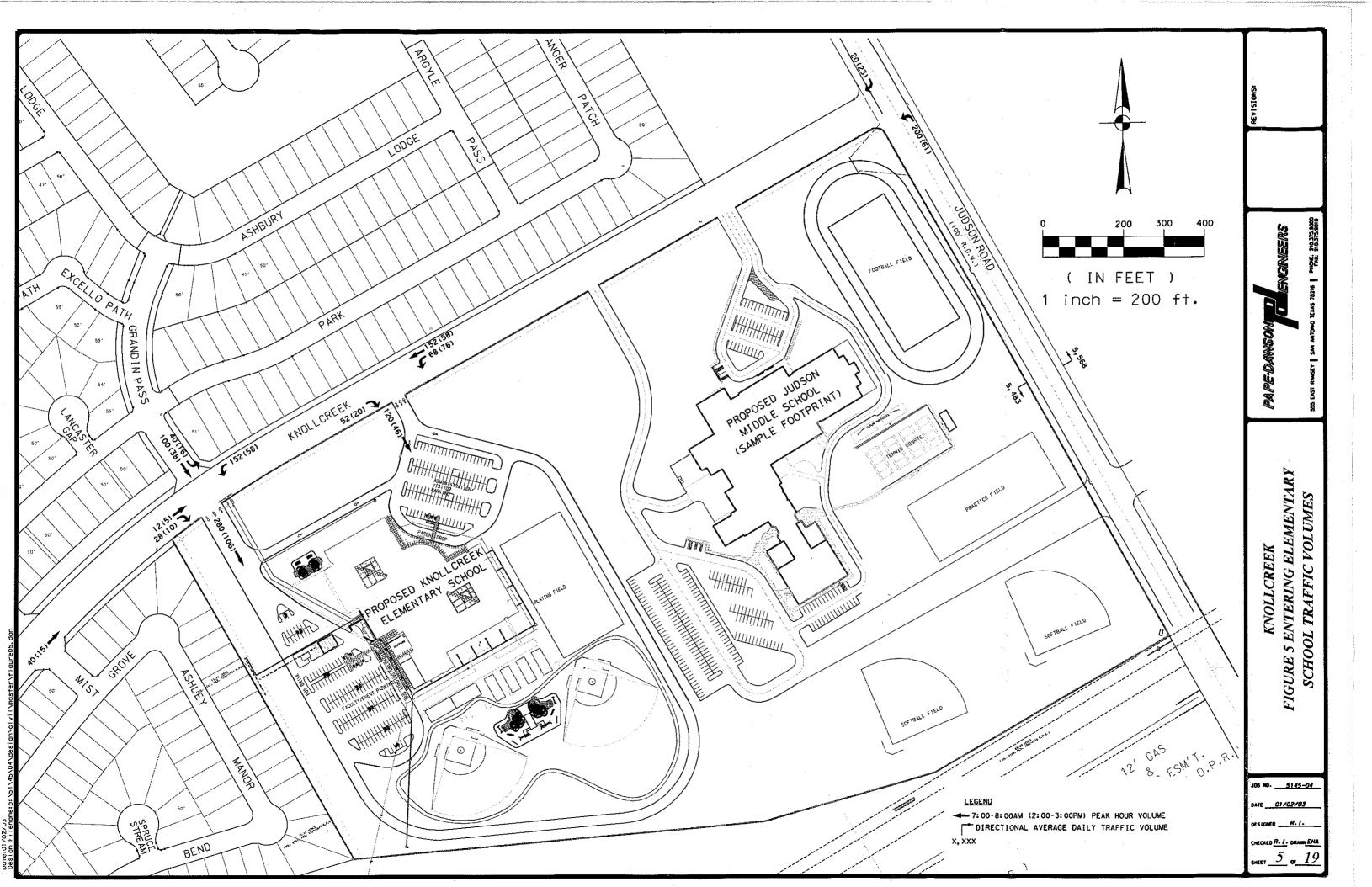
TRIP DISTRIBUTION

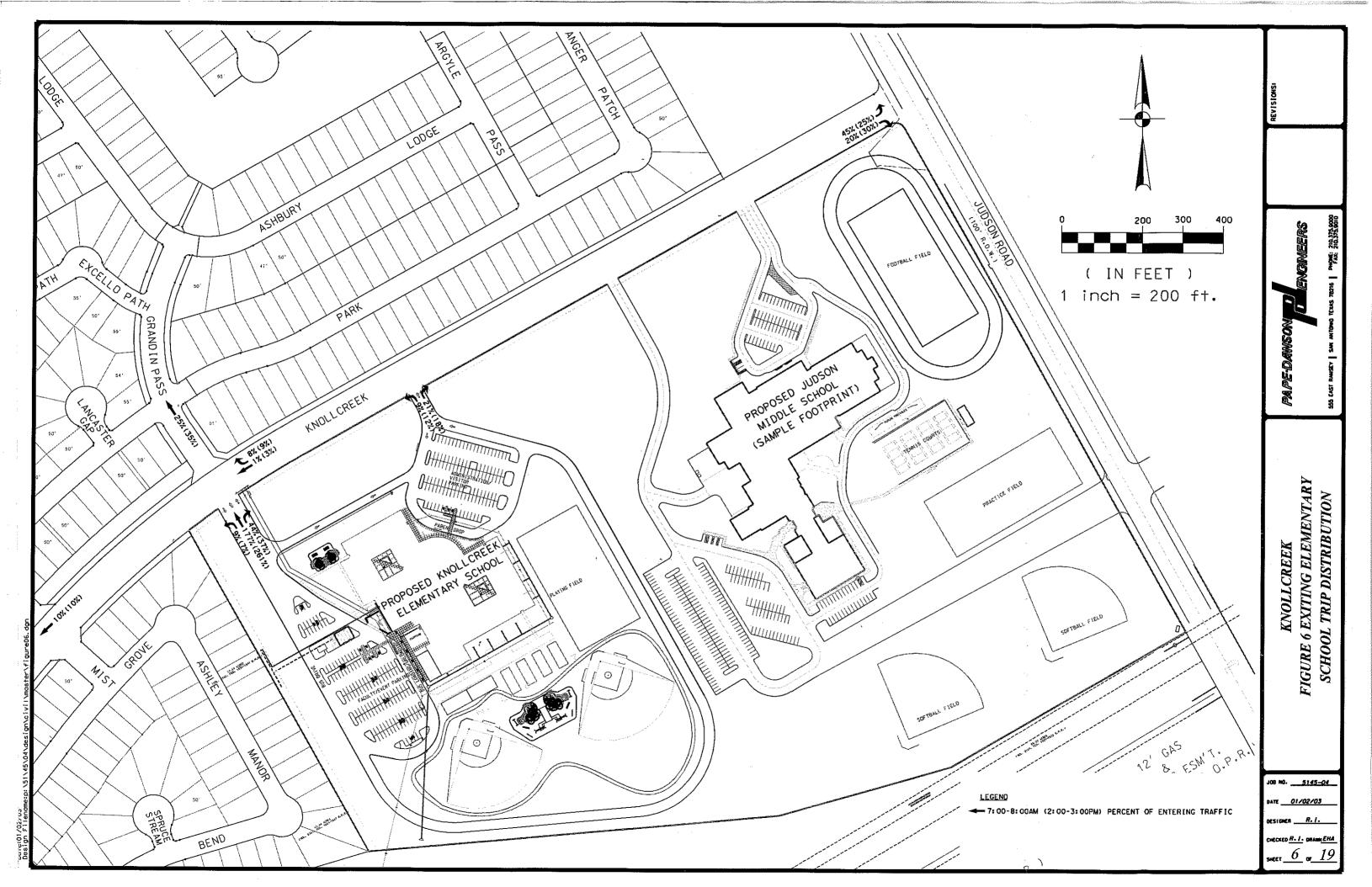
The cardinal compass directions from which drivers are expected to approach and depart the sites are based on several variables. These include the configuration and characteristics of the local street network, the distribution of population within the region, and school boundaries. Expected global trip distribution for the proposed subdivisions, elementary, and middle school developments are presented in **Figure 3**. This trip distribution is based upon the existing traffic patterns within the study area, engineering judgment, and projected attendance boundaries. The proposed attendance boundaries are illustrated in Appendix C.

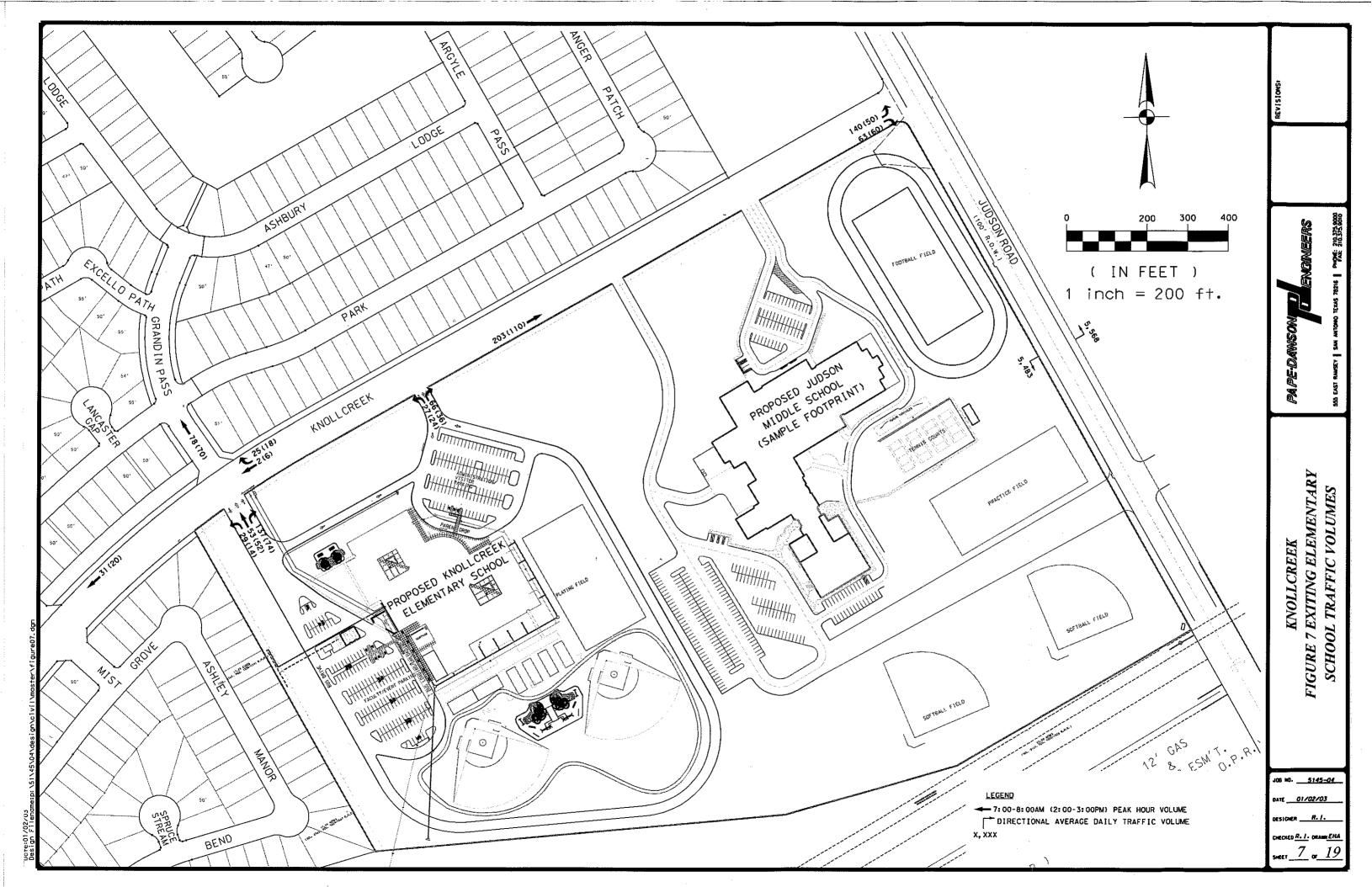
Site Traffic Assignment

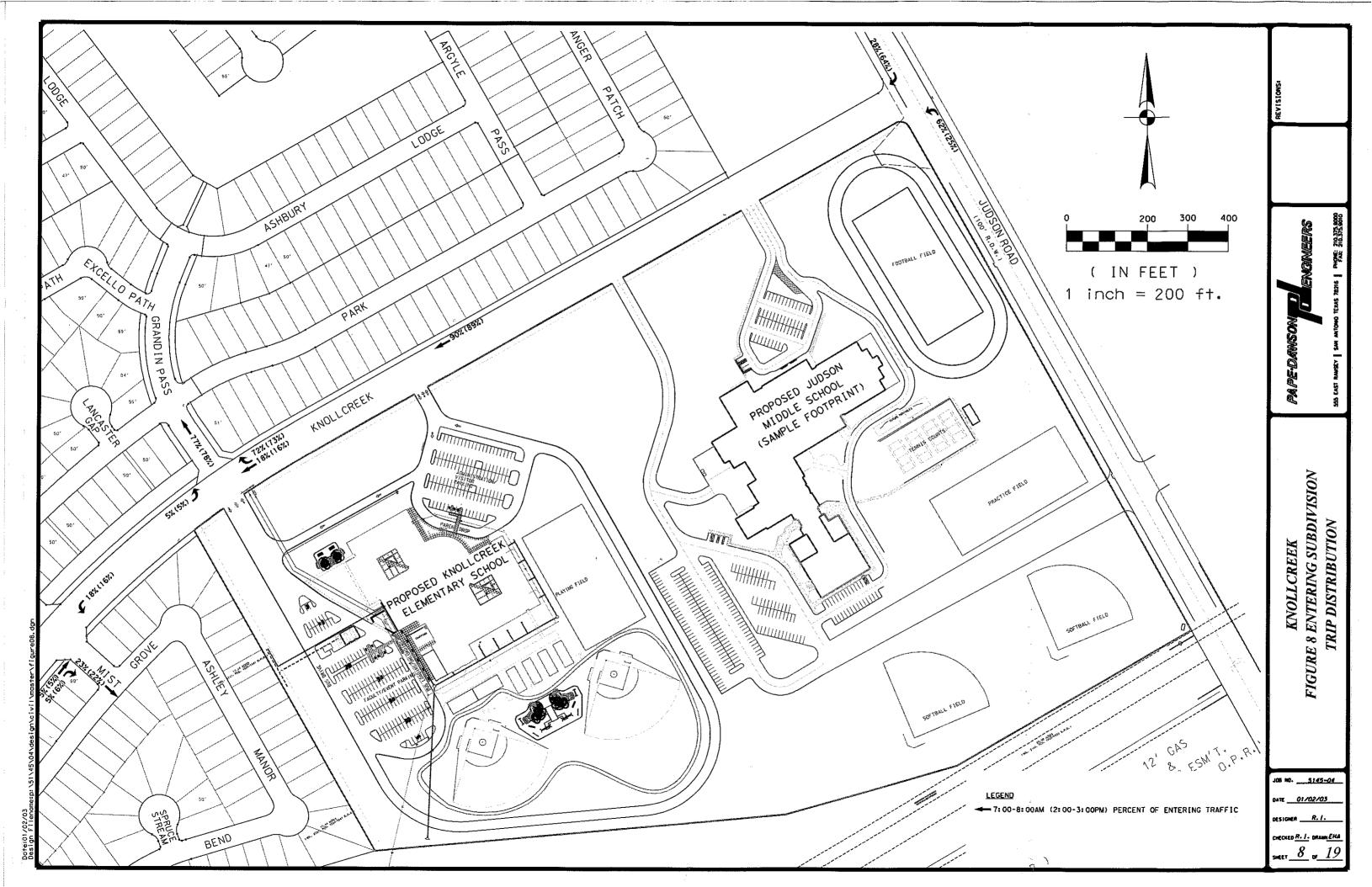
Using the global trip distribution identified in Figure 3 in conjunction with the roadway system that is assumed to be in place upon the completion of the development, detailed trip distributions were prepared for entering and exiting traffic. These detailed distributions are presented in Figures 4 and 6 for elementary school traffic, Figures 8 and 10 for subdivision traffic, and Figures 13 and 15 for middle school traffic. The projected site traffic presented in Table 3 was assigned to the local roadway network for the AM and PM peak periods using the detailed trip distributions presented in Figures 4, 6, 8, 10, 13 and 15.

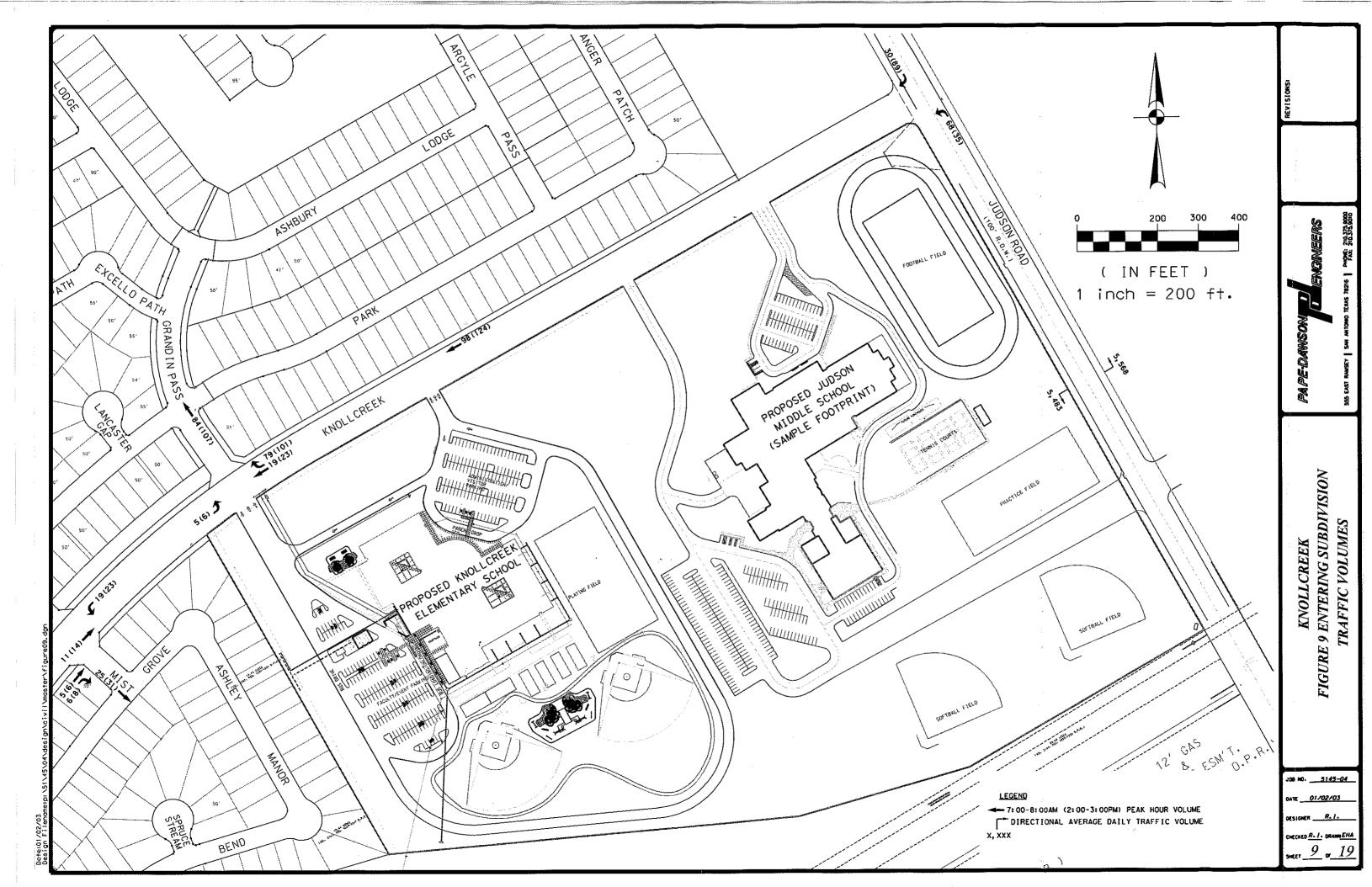

Projected Traffic

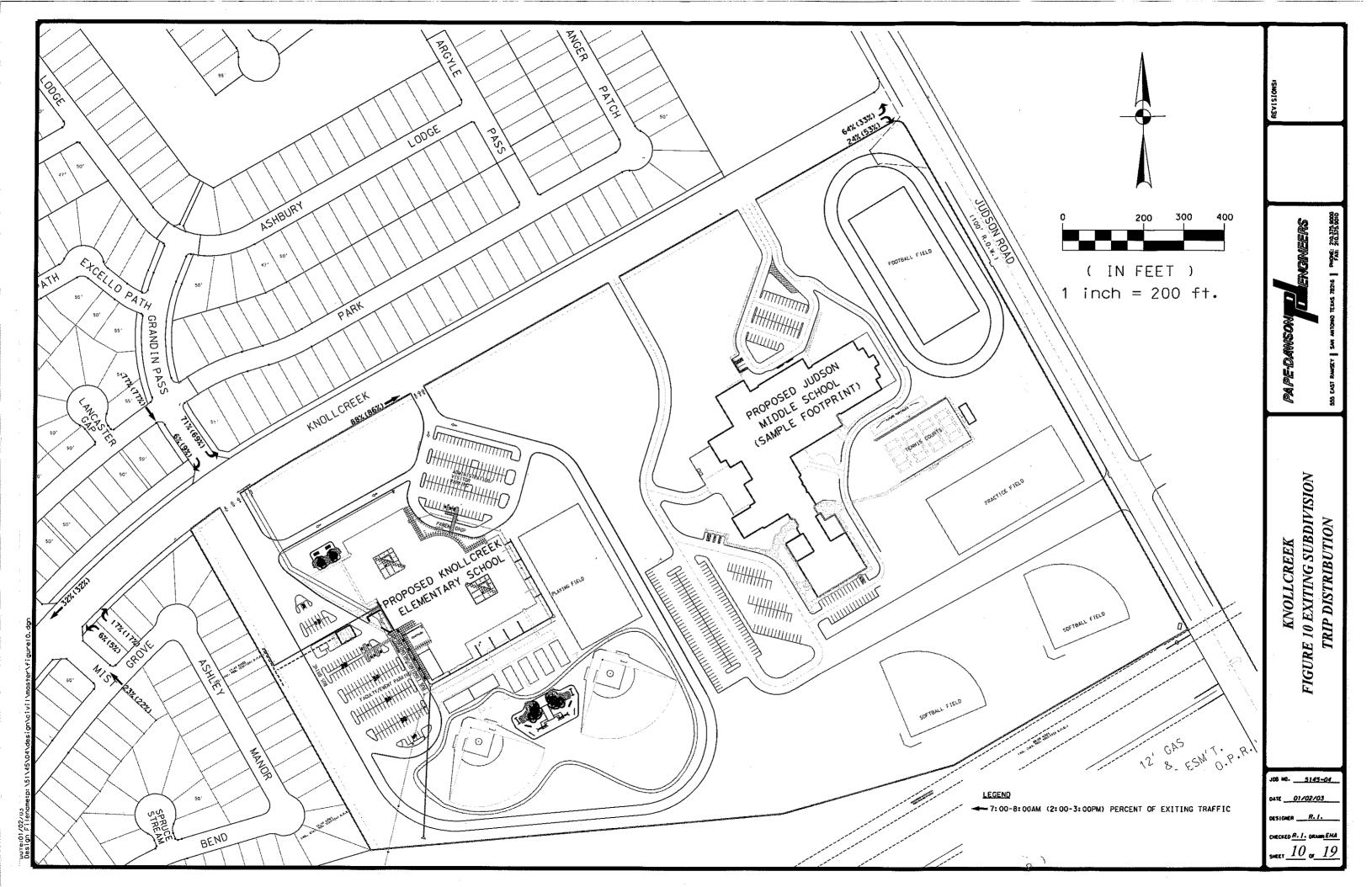

Projected non-site traffic volumes for 2005 are presented **Appendix G**. The combined site plus non-site traffic volumes at completion in 2005 are illustrated on **Figures 12** and **19**. Total volumes were shown on different figures because of the difference in peak times between the elementary and middle school traffic. Exiting subdivision traffic was also adjusted to determine traffic volumes during the afternoon dismissal times. The traffic count data along Judson road was used to determine an hourly percent distribution. This was used to estimate the subdivision exiting traffic during the 2-3 pm and 3-4 pm times.

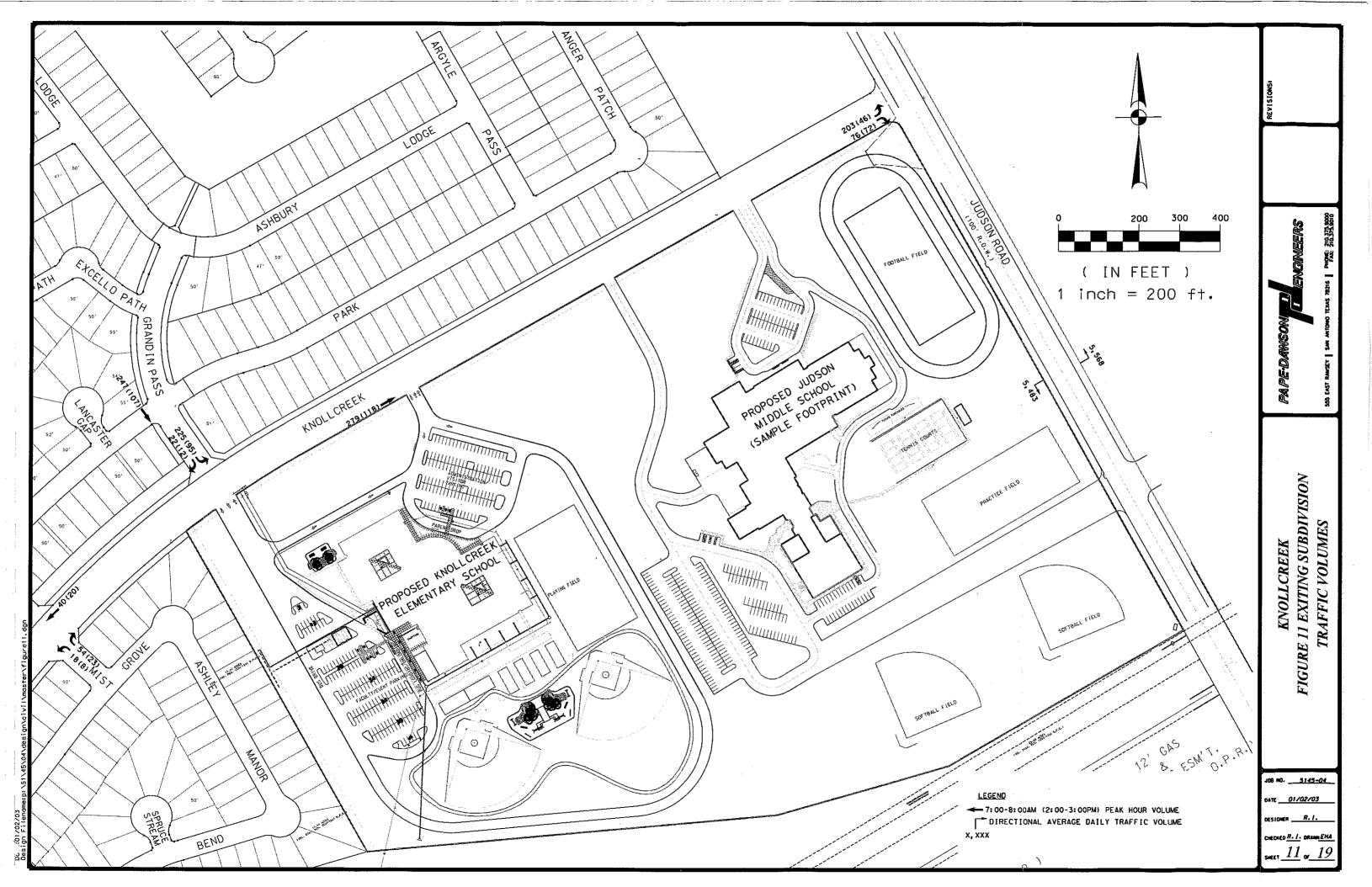


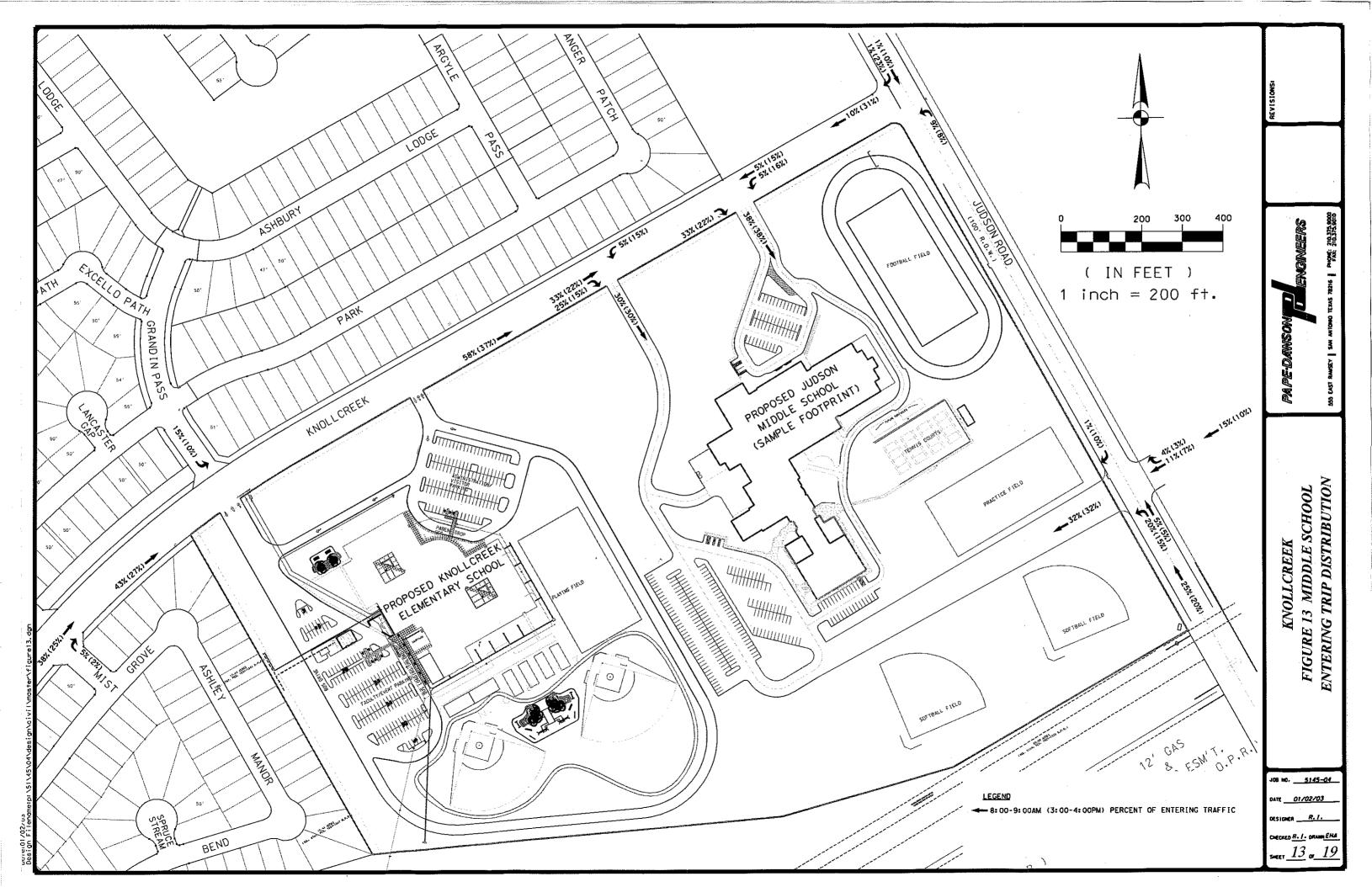

ENGINEERS

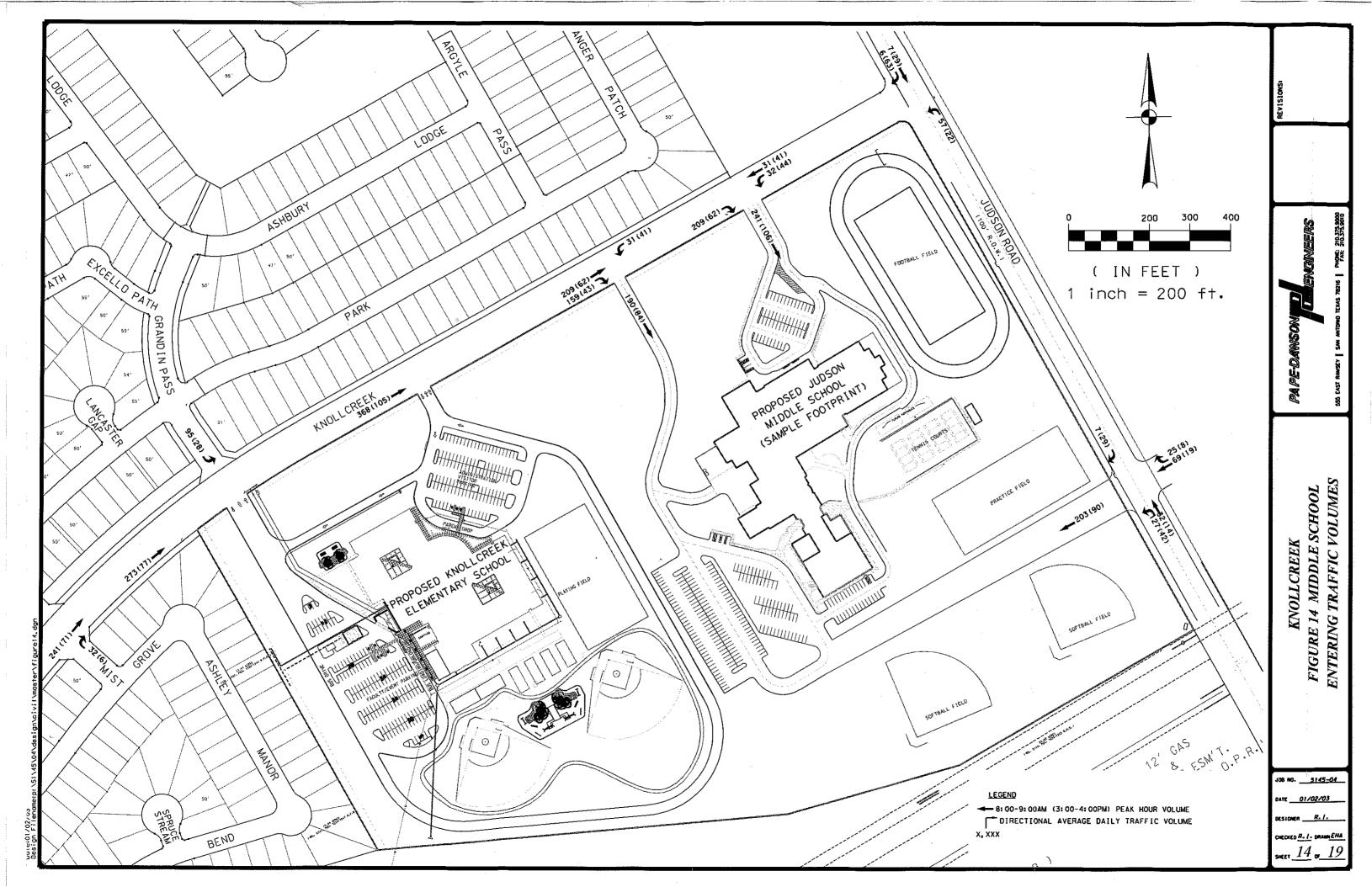

PAIPE-DAWSON T

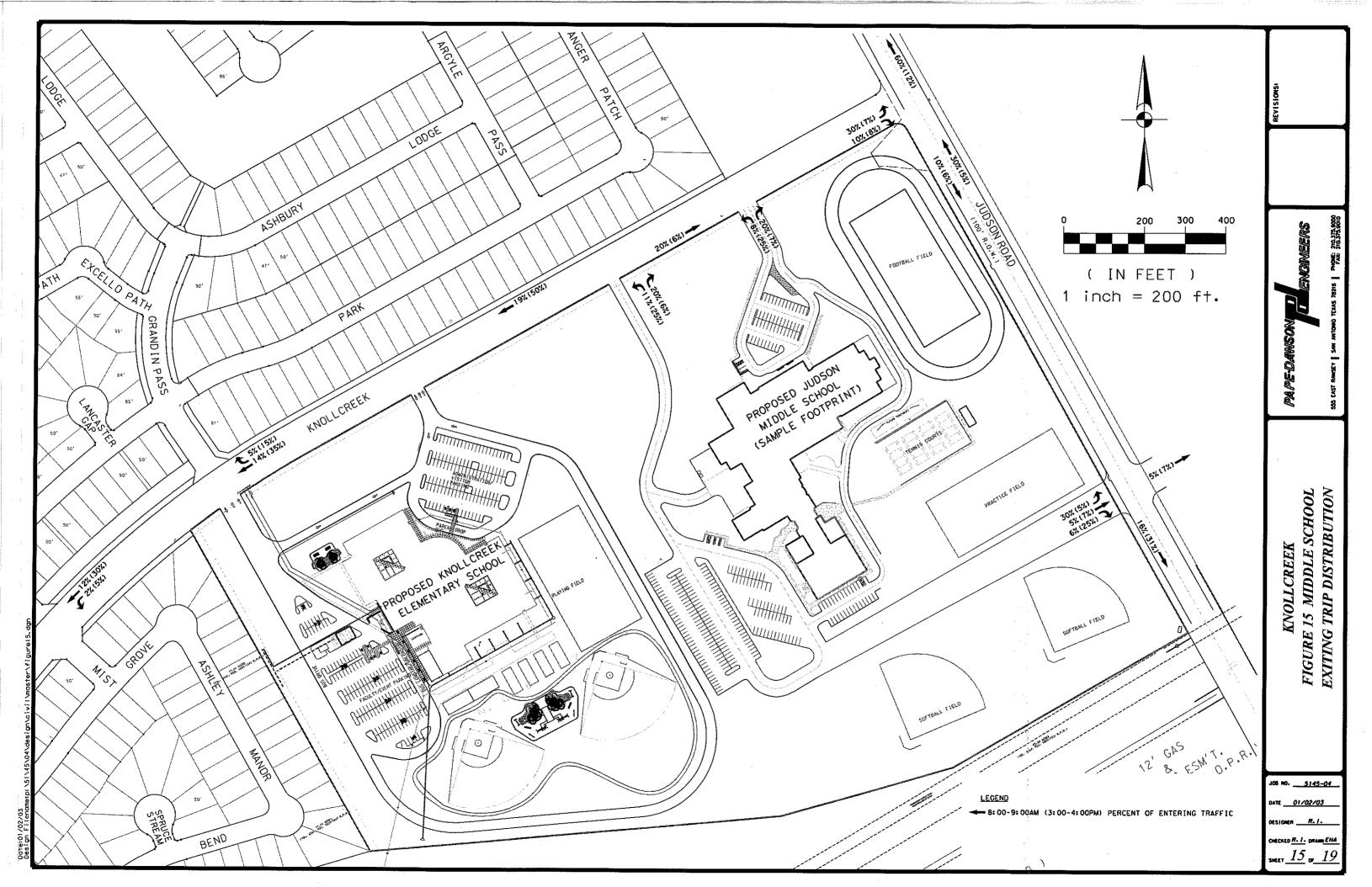


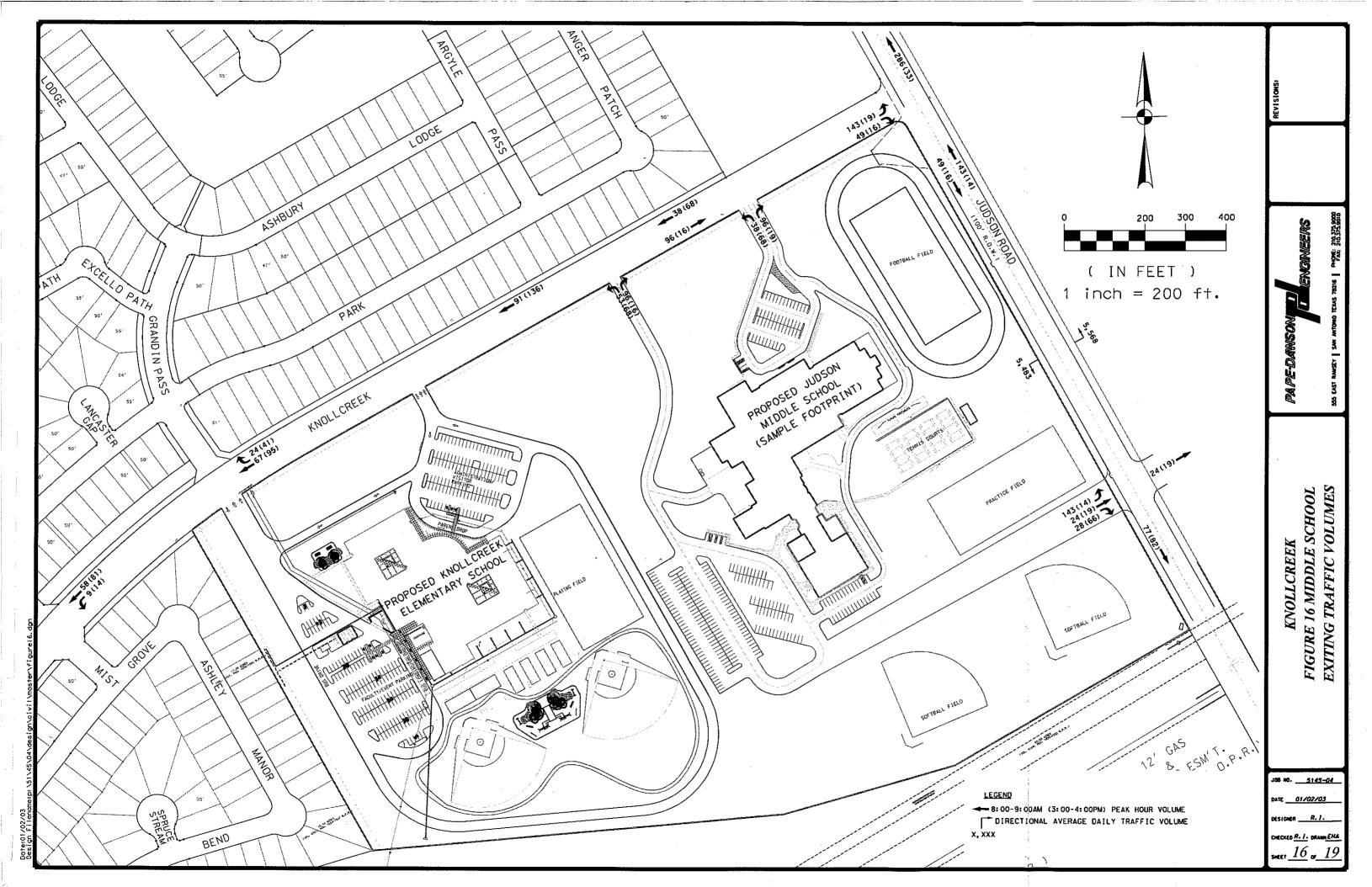


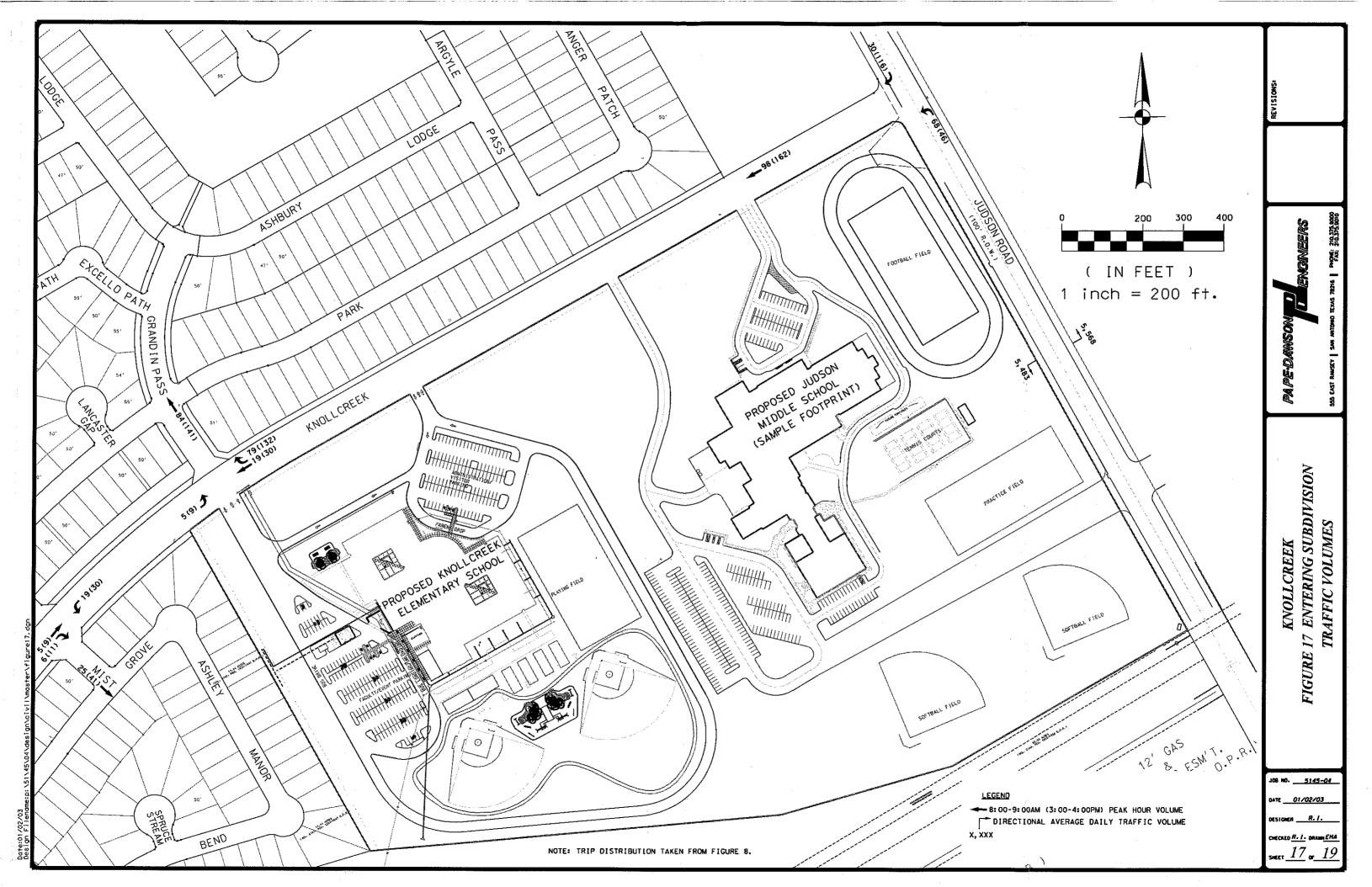


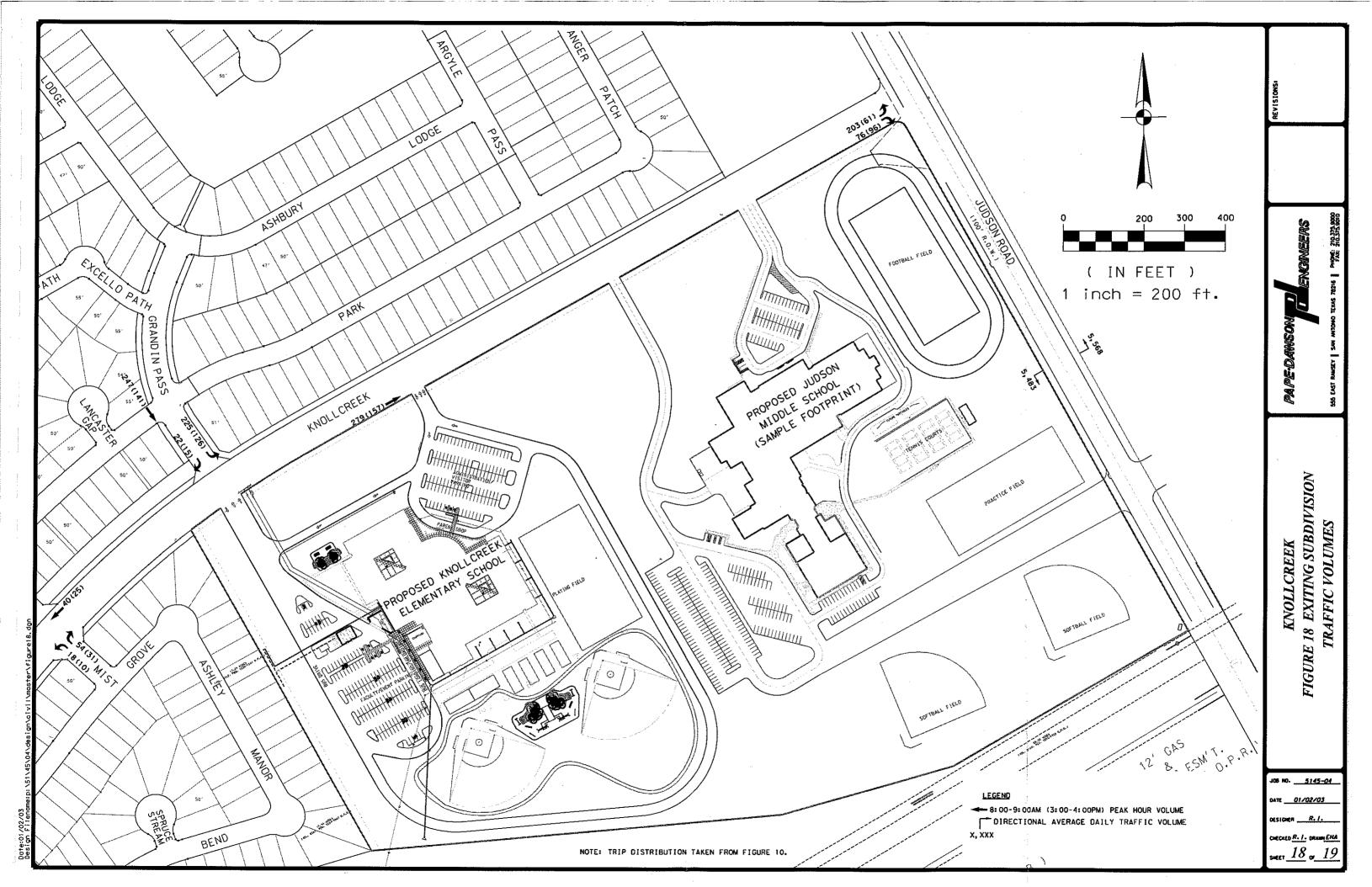


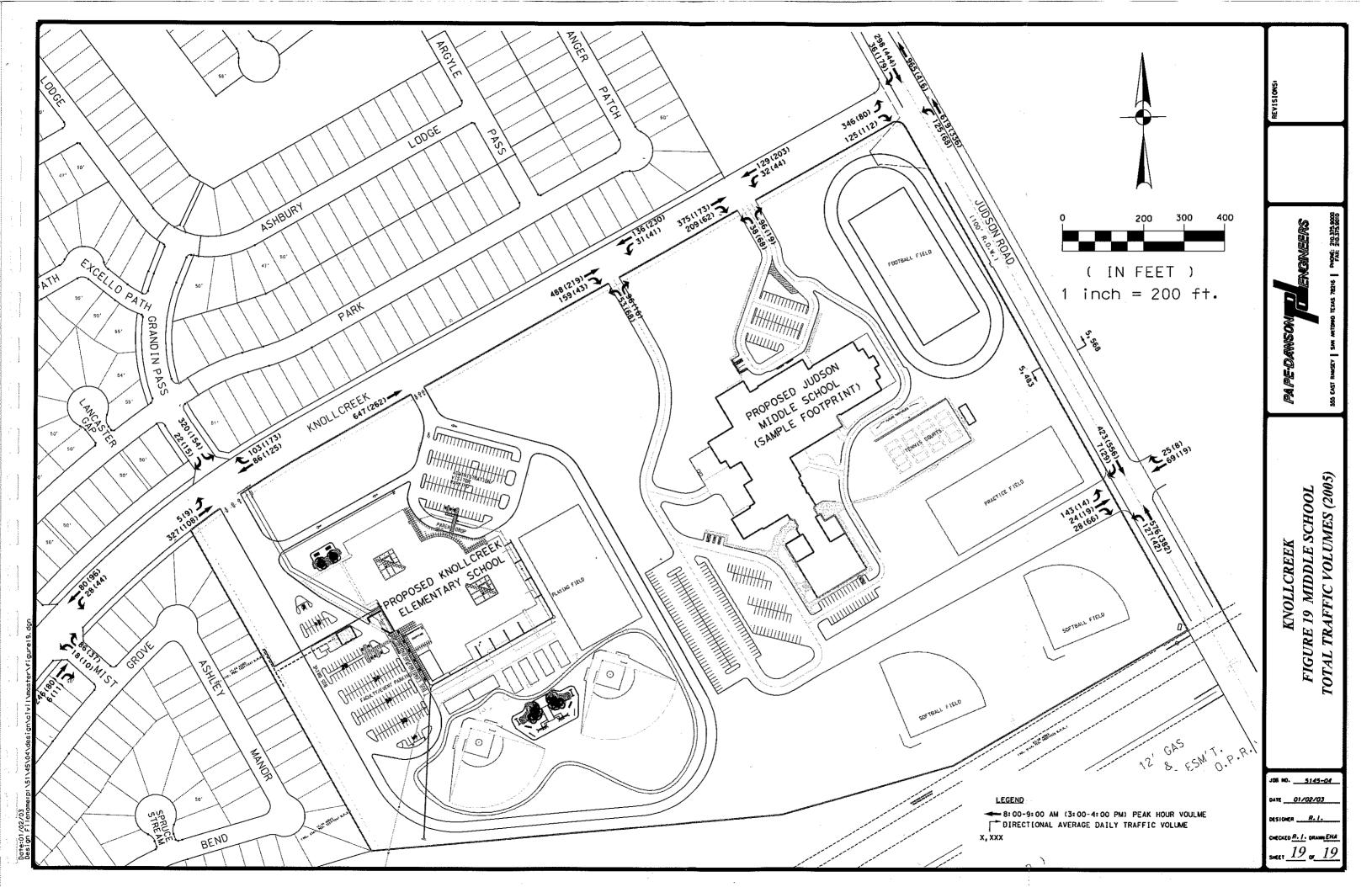












TRAFFIC ANALYSIS

SITE ACCESS

The proposed driveway throat lengths are adequate for the projected demand and usage, as shown in **Table 4**, below.

Dı	Table 4 Driveway Throat Length vs. Queue Length										
Driveway Proposed Driveway Projected Queue Leng No. Throat Length Peak Hour											
1	140'	63'									
2	85'	20'									
3	200'	30'									
4	130'	25'									
5 (2-Way Stop)	>500'	270'									
5 (Signalization)	>500'	120'									

The design throat lengths provide sufficient queue storage at each driveway for the 95th percentile queue projected using Synchro Version 5.0. A factor of 1.75 was applied to the output data in order to account for school growth and the presence of school buses.

The proposed driveway locations and throat lengths are designed to facilitate circulation within the site and also to provide easy access to the roadways serving the site. Circulation in and out of the site will benefit from the driveway throat lengths.

The recommended left turn storage lengths for the projected demand and usage, are shown in **Table 5**, below.

	Table 5 Left Turn Storage Length
Driveway No.	WB Knollcreek Left Turn Recommended Storage Length
1	150'
2	100'
3	100'
4	100'
	NB Judson Road
5	150'

The design storage lengths provide sufficient queue storage at each driveway for the 95th percentile queue projected using Synchro Version 5.0. The left turn tapers are recommended to be 102 feet in length and consist of a 300 foot turnoff curve radius followed by a 150 foot radius per pages 720 and 722 of the 2001 AASHTO Policy on Geometric Design of Highways and Streets (Greenbook). The current driveway spacing allows for the recommended storage lengths and taper.

CAPACITY ANALYSES

Capacity Analyses were conducted at each key intersection and site driveway's within the study area for Site plus Non-Site Traffic (2005). Capacity analyses are presented in standard Level of Service (LOS) format. Level of Service refers to the operational conditions within a traffic stream and their perception by motorist in terms of delay, freedom to maneuver, traffic interruptions, comfort, convenience and safety. LOS are designated from A to F with A representing the best traffic conditions and least delay, while F represents poor conditions and the highest delay. Evaluation of the peak hour capacity for each intersection and scenario were performed using Synchro Version 5.0. All intersections were analyzed with appropriate traffic control. Detailed analysis worksheets are provided in **Appendix D**.

Level of Service at unsignalized intersections is determined by the average delay a vehicle experiences on each intersection approach. Therefore, a different level of service is reported for each approach. The general characteristics associated with each level of service for unsignalized intersections are presented in **Table 6**. Most agencies consider Level of Service D to be the minimum acceptable level of service.

	Table 6 HCM Level of Service at Unsignalized Intersections									
Level of Service	Average Intersection Delay (sec/veh)	Description								
A	≤ 10	Little or no delay								
В	$> 10 \text{ and} \le 15$	Short traffic delay								
C	$> 15 \text{ and } \le 25$	Average traffic delay								
D	$> 25 \text{ and } \le 35$	Long traffic delay								
Е	$>$ 35 and \leq 50	Very long traffic delay								
F	>50	Extreme delays, possibly severe congestion								

Level of service at signalized intersections is determined by the average vehicle delay. Values can be reported for the intersection as a whole, or each individual movement. For purposes of analysis, in this report, summary intersection Level-of-Service values are reported since the intersection LOS is C or greater. The general characteristics associated with each level of service for signalized intersections are presented in **Table 7**. Most agencies consider Level of Service D to be the minimum acceptable level of service.

	Table 7 HCM Level of Service at Signalized Intersections								
Level of Service	Average Intersection Delay (sec/veh)	Description							
A	≤10	No delays at intersection, smooth progression of traffic. Uncongested operations. All vehicles clear in a single signal cycle.							
В	> 10 and ≤ 20	No delays at intersection, smooth progression of traffic. Uncongested operations. All vehicles clear in a single signal cycle.							
С	> 20 and ≤ 35	Moderate delay, satisfactory to good progression of traffic. Light congestion, occasional backups on critical (high volume) approaches.							
D	> 35 and ≤ 55	Little or no progression of traffic along the roadway with a high probability of stopping at signalized intersections operating at this level of service. Significant congestion on critical approaches, but intersection is functional. Vehicles required to wait through more than one cycle during short peak periods.							
Е	> 55 and ≤ 80	Heavy traffic flow conditions. Delays of two or more traffic signal cycles probably. No progression. Limit of stable flow. Blockage of intersection may occur if signal does not provide for protected turning movements.							
F	>80	Unstable traffic flow. Heavy congestion. Traffic moves in forced flow condition. Three or more cycles required to pass intersection. Total breakdown with stop and go conditions.							
*	>> 80	Very unstable traffic flow. Very heavy congestion. Traffic moves in forced flow condition. More than three cycles required to pass intersection. Total breakdown. Stop and go only. Delays are beyond the range of the Highway Capacity Manual equations. Represents an extreme level of over saturation.							

The City of San Antonio requires that viable recommendations for mitigation of site-generated traffic be developed for all roadways and intersections that are expected to operate at Level of Service D, E, or F. For boundary roadways, the City of San Antonio requires that roadways and intersections that are projected to operate at Level of Service D, E, or F with site-generated traffic must be improved to bring them up to the Level of Service that would exist without the site-generated traffic.

NEISD KNOLLCREEK ELEMENTARY SCHOOL LEVEL 2 TIA

EXISTING CONDITIONS

Since Knollcreek does not currently exist analysis of the future intersections with only background traffic was prepared.

EVALUATION OF TRAFFIC IMPACTS

The non-site (background) traffic volumes that are projected to exist on the roadway network in the design year (the year that the development phase is completed), were estimated by factoring the existing count data with an annual growth rate of four (4) percent to bring the data up to the design year of 2005.

KEY INTERSECTION CAPACITY ANALYSIS

Build-out (2005)

Judson Road and Knollcreek

The peak hours for the above intersection were identified as 7-8 AM and 2-3 PM. Detailed analysis worksheets are presented in **Appendix D**. The results show that if the intersection operates as free-flow along Judson Road and stop control on Knollcreek the LOS is F on Knollcreek. Signalization results in a LOS of B or better for the entire intersection. A right-turn deceleration lane on the southbound approach to Knollcreek is recommended to improve intersection operations and remove traffic that is slowing for a right-turn from the traffic stream. Besides improving the through capacity, right-turn deceleration lanes will generally improve the safety of the roadway by reducing the number of rear-end collisions. The recommended left turn storage length for eastbound Knollcreek is 230 feet and 200 feet for northbound Judson Road. Capacity analysis for the intersection is presented in Table 8.

Driveway #1 and Knollcreek

The peak hours for the above intersection were identified as 7-8 AM and 4-5 PM. Detailed analysis worksheets are presented in **Appendix D**. HCM analysis results show that if the intersection operates as an all-way stop the intersection operates at an overall LOS of B or better. Capacity analysis for four way stop control is limited to a maximum of two lanes on all approaches, therefore, two lanes were assumed on all approaches. Analysis of the intersection as 2-way stop control with Knollcreek operating under free flow conditions results in a LOS of F (am) and C (pm) for vehicles exiting the neighborhood and elementary school. Signalization results in a LOS of A for the entire intersection. A signal at this intersection may be desirable since this would likely be a location with high pedestrian (children) movement in and out of the subdivision.

SITE DRIVEWAY CAPACITY ANALYSIS

An evaluation of the other site driveway's establishes a baseline for determining the impact of site traffic on the future roadway system. Specifically, conditions at site intersections are analyzed for the

design year assuming the development is constructed. This report is a planning level document and this analysis was performed to project future conditions to identify operational issues that may be addressed during the design phase. Capacity analyses for the site's driveways are presented in **Table 8**.

The site driveways operate reasonably well during the Peak hours at a level of service B or better. However, driveway 5 however operates at a level of service F during AM and PM peak hours. Left turning traffic is the main cause of this poor level of service. Simulation study with Synchro Version 5 indicated that driveway 5 is projected to operate at a LOS of B with signalization. Signalization would provide an opportunity for the left turning vehicles to safely complete the turn across the conflicting through traffic.

Key Intersection	Table 8 Capacity Analysis Build	l-out (2005)
	Level of S	Service
Intersection	AM Peak	PM
Judson Road at Knollcre	ek ¹	
Stop on EB Knollcreek	F	F
Signalization	В	A
Driveway 1 at Knollcreek	ζ^3	
4-Way Stop	В	A
2-Way Stop	F	C
Signalization	A	A
Driveway 2 at Knollcreek	3	
Stop at Driveway	В	В
Driveway 3 at Knollcreek	2	
Stop at Driveway	В	В
Driveway 4 at Knollcreek	2	
Stop at Driveway	В	В
Driveway 5 at Judson Ro	\mathbf{ad}^2	
2-Way Stop	F	F
Signalization	В	В

 $^{1 - 4 - 6 \}text{ pm}$

 $^{2 - 3 - 4 \}text{ pm}$

 $^{3 - 2 - 3 \}text{ pm}$

TRAFFIC SIGNAL WARRANT ANALYSES

A traffic signal warrant study for a proposed signal at Judson Road and Knollcreek and Judson Road and middle school Driveway 5 for projected 2005 conditions were performed as a part of this Traffic Impact Analysis. The study indicated that a traffic signal is warranted at both locations. A copy of traffic signal warrant study is presented in **Appendix F**. The installation of traffic signal's is expected to improve intersection operations.

Projected Average Daily Traffic (ADT) volumes were calculated to determine the future ADT of Judson Road and Knollcreek. Existing ADT was added to the future ADT produced from the elementary school, middle school, and residential neighborhood. A summary of the calculations is located in Appendix G. Knollcreek was not modeled in the latest Regional Model, no long term traffic projections for Knollcreek are available.

Elementary and Middle School – driveway in/out volume rates were distributed using data from the Patricia J. Blattman Traffic Study for incoming and outgoing vehicles distributed throughout the day. The same distribution was used for the middle school and offset by an hour to account for different school start and dismissal times. The driveway volumes were determined by taking the weekday 2-way volume counts and breaking them out based on the percent distribution for the AM(PM) times. The am percent distribution was assumed to be distributed from 12:00 am to 11:59 am, and the afternoon from 12:00 pm to 11:59 pm.

Residential Neighborhood – The 24 hour distribution was determined using the ADT counts on Judson Road. An adjustment was made to the 7-9 am and 3-4 pm distributions in order to more closely model the Trip Generation peak hour volumes. This was accomplished by simply averaging the count data during these times for both directions. Once the percentages were found a similar process was followed as stated above for the school distribution.

RECOMMENDATIONS

The development plans for the Knoll Creek Schools and residential development along Knollcreek Road should incorporate as many of the following recommendations to facilitate the movement of traffic to and from the site and further reduce the impact of site traffic on the adjacent street network, as possible. The following items may require some form of participation by the project developer.

- Location of the Knollcreek intersection and Judson Road should consider the existing vertical profile of Judson Road. If the intersection is left unsignalized then a minimum intersection sight distance of 385 feet north and 500 feet south of Knollcreek should be provided.
- Each driveway should include one inbound lane and two outbound lanes (one for left turns and one for right turns).
- The median opening should use the bullet nose design as described on page 701 of 2001 AASHTO Policy on Geometric Design of Highways and Streets (ASSHTO Greenbook).

NEISD KNOLLCREEK ELE*MENTARY SCHOOL* LEVEL 2 TIA

The small radius of the median should be 2 feet and the large radius should be 75 feet to accommodate school buses. For an assumed median width of 14 feet the minimum length of the median opening should be 96 feet.

- Elementary school may need additional space to accommodate special events for up to 300 vehicles or approximately 33% of the school attendance. All of the parking area would not necessarily need to be marked, as parking for special events often uses all available parking space, marked or not.
- Installation of a traffic signal at the intersection of Judson Road and Knollcreek.
- Recommend a left turn storage length of 230 feet for eastbound Knollcreek at Judson Road and 200 feet for northbound Judson Road at Knollcreek.
- Consideration of a traffic signal at the intersection of Knollcreek with Elementary School Driveway #1 and the new neighborhood access point to improve traffic flow in and out of the sites and to improve the safety of pedestrians and school children crossing the roadway
- Parent drop-off/pick-up area should be designed to maximize the curb space for curb side drop off. NEISD should plan to actively manage drop-off/pick-up areas to maximize vehicle efficiency.
- Driveway 2 and assumed Driveway 4 are likely to produce stacking along Knollcreek. NEISD should consider the use of "traffic supervisor(s)" or uniformed officer(s) to provide traffic control to direct drivers during peak periods.
- Consideration of a traffic signal at the intersection of Judson Road and Mountain Vista Drive and middle school Driveway 5 to improve traffic flow onto Judson Road.
- Incorporate traffic control improvements such as signing and pavement markings into the site plan that conform to the *Texas Manual on Uniform Traffic Control Devices* for consistent uniform traffic control.
- Provide right turn deceleration lane on southbound Judson Road at Knollcreek.
- Construct median left turn lanes along Knollcreek at each school driveway to facilitate the safe and efficient flow of traffic. Taper design should be accordance with the AASHTO Greenbook.
- NEISD should operate the elementary and middle with hours that offset the peak times between the two schools. Using existing school start and stop times, it is recommended that elementary school hours be from 7:35 am to 2:35 pm and middle school hours be from 8:30 am to 3:30 pm.

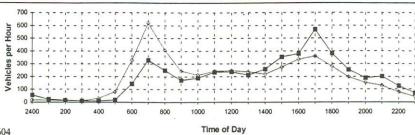
APPENDIX A COSA TIA WORKSHEET

		Traf	fic Impact	Analysis (TL	A) Threshol	d Workshee	t		
Complete this form as an aid to determine	if your pr	oject requi	ires a Traffic I	mpact Analysis,	as per City Co	de, Section 19-	69.		
Project Name: North East Independent Se	chool Dist	rict – Kno	ollcreek Eleme	ntary School					
Location: Southwest corner of Judson Ros								_	_
Applicant: <u>Pape-Dawson Engineers</u> , Inc. Address: <u>555 East Ramsey</u> , San Antonio, T	Cover 7921	16	Management and a state of			Dhana Nasa	1(210)	Owner	or 🛛 Agent
Address. 333 East Ramsey, San Antonio, 1	exas /62	10				Phone Num	ber:(210)	1373-9000	
Permit Type (check one):									
Zoning, N.C.B	POADP	#	P	lat #	Bldg.	Permit #		Other:	
•		500 PR TO A CONTROL OF THE							
BOX A (Original TIA) RESIDENTIA	1			k Hour?	D 1	TT	n n	1 77	m: P
Land Use	Anticipated Number Land Use of Unit				5-2000000000000000000000000000000000000	K Hour O Rate	Pe	eak Hour Trips	Trip Rate Source
Single Family Detached Housing (210)	1012		5-6 PM W	pm, Wkday) eekday	1.01	·	1022	11103	ITE Code: 210
					of the State of th		100000000000000000000000000000000000000		Other:
BOX B (Original TIA) NON-RESIDE	ENTIAL D	EVELOF	PMENT						
Anticipated		Project S	Size	Peak I	Hour?	Peak Ho	our	Peak Hour	Trip Rate
Land Use	Acres	GFA	Other*	(e.g., 5-6 pr		Trip Ra	ite	Trips	Source
Elementary School (520)			800	7-8 AM V		0.89		712	ITE Code:
Middle/Junior High School (522)			1250	8-9 AM V	veekday	0.89		1112	Other: Local rate as described in report.
			*specify: Studer	nts				ı	1
BOX C (Updated TIA) If property alr	eady has a	TIA on fi			ore Box C.				
Peak Hour Trips Projected				rips (from Box A	,			Increase in Pea	
in Current TIA		1	rojected in U_{I}	odated Developr	nent Plan	(1	f over 100	additional trip	s, a new TIA is required)
			W	5 - B					
BOX D (Information Regarding the		Agency, v	who prepare	d the TIA)					
Prepared by: Gilmer D. Gaston, P.E., PTC Comments: A Level 2 TIA is required and		nrepared				N. T. C.			Date: <u>January 03 2003</u>
Comments, 11 Level 2 11A is required and	nas occil	propared							
DOVE (F. Official)									
BOX E (For Official Use Only, Do N				o study must mas	t with City stoff	to digayaa tha asa			study before beginning the study.
A traffic impact analysis is	not require	ed. The traf	ffic generated by	the proposed dev	elopment does i	not exceed the thi	eshold rec	quirements of the quirements.	study before beginning the study.
The traffic impact analysis	has been w	aived for th	ne following rea	son(s):					
Reviewed by:			74 1972		52.00 mg/d source		Date:_		
NOTE: GFA = Gross Floor Area (bldg size)	ITE = Ir	astitute of Tr	ansportation Engi	neers Trin Generat	ion 6th Edition	525 School Street	S W Suite	410 Wachington I	OC 20024-2729: (202) 554-8050.

APPENDIX B

TRAFFIC COUNT DATA
TRIP GENERATION DATA

AC Group, LLC


Automatic Traffic Recorder Counts

24-Hour Volume 9,446

Average Daily Traffic

Project No.: 12-01 Station No.: 200 Counter No.: 7596

Location: Judson Road City/State: San Antonio, TX Date: 24 May 2001 Day of Week: Thursday

Site: Judson Road, South of Loop 1604

Time	Peak	Northbound	100	Southbound	Time	Peak	-	Northbound		Southbound
2400					1200					
15	5		9		1215		56		71	
30	5		17		1230		72		49	
45	5		15		1245		57		55	
100	3	18	15	56	1300		61	246	62	237
115	6		5		1315		60		54	
130	2		6		1330		53		50	
145	3		8		1345		56		54	
200	3	14	3	22	1400		67	236	53	211
215	8		2		1415		59		40	
230	0		4		1430		49		76	
245	0		6		1445		60		84	
300	4	12	3	15	1500		50	218	60	260
315	2		3		1515		65		68	
330	1		0		1530		77		77	
345	2		2		1545		63		103	
400	4	9	5	10	1600		70	275	107	355
415	4		5		1615		107		83	
430	4		4		1630		69		89	
445	14		1		1645		76		94	
500	9	31	1	11	1700		84	336	115	381
515	7		2		1715		100		130	
530	14		3		1730		76		153	
545	21		6		1745		99		165	
600	38	80	6	17	1800		84	359	121	569
615	42		19		1815		81	307	117	507
630	61		17		1830		65		102	
645	98		34		1845		68		89	
700	127	328	73	143	1900		66	280	75	383
715	125		57		1915		47	200	69	303
730	145	;	94		1930		49		58	
745	192		93		1945		64		70	
800	157		87	331	2000		36	196	58	255
815	135		80		2015		44	170	48	200
830	115		75		2030		31		48	
845	77		47		2045		36		50	
900	80		47	249	2100		40	151	43	189
915	58		48	447	2115		28	131	56	107
930	80		43		2130		45		58	
945	51		38		2145		26		46	
1000	55		43	172	2200		29	128	40	202
1015	50		35	1/2	2215		22	120	39	202
1030	60		55		2213				0.0000	
1045	54		47				15		38	
1100	47		52	189	2245		22	70	26	125
1115	62		52	193	2300	-	19	78	22	125
1130	64				2315		17		26	
1145	60		53		2330		12		16	
1200	56		57	222	2345		5		9	
.200	30	242	71	233	2400		8	42	20	71

AC GROUPLEC

Average Daily Traffic Data

Project No.: Station No.: Counter No.: 42-02 100 0042

Date: Day of Week: 4 December 2002 Wednesday

Location: City/State: Mountain Vista and Judson Road EB / WB Mountain Vista San Antonio, Texas

Mountain Vista (East of Judson Road)

End Time		Eastbound	٠,	Vestoound
	М	ountain Vista	Mic	suntzin Vista
15	13		4	
30	11		4	
45	8		2	G1555
100	5	37	2	12
115	4		1	
130	3		2	
145	3		3	
200	3	13	0	6
215	3		4	
230	2		4	
245	5		0	
300	5	15	2	10
315	1		1	
330	3		1	
345	5		5	
400	0	9	1	8
415	1		1	
430	0		1	
445	0		1	
500	1	2	2	5
515	1		1	
530	3		4	
545	2		12	
600	2	8	18	35
615	7		14	
630	4		29	
645	5		47	
700	6	22	45	135
715	10		60	
730	19		59	
745	28		79	
800	32	89	47	245
815	17		51	
830	21		44	
845	23		34	
900	21	82	40	169
915	11		26	
930	15		24	
945	11		17	
1000	16	53	28	95
1015	9		19	
1030	17		16	
1045	17		16	
1100	16	59	16	67
1115	26		23	
1130	16		19	
1145	16		34	
1200	15	73	15	91

End Time	.,	Eastbound		Westbound
		esntan Visita		austass Vista
1215	31		13	
1230	15		19	
1245	28		19	70
1300	22	96	21	72
1315	16		23	
1330	14		20	
1345	22		12	
1400	13	65	11	66
1415	20		23	
1430	25		18	
1445	22		16	7.4
1500	22	89	17	74
1515	30		15	
1530	35		27	
1545	37	125	25	00
1600	33	135	22	89
1615	33		23	
1630	53		33	
1645	48		32	
1700	64	198	21	109
1715	56		27	
1730	81		30	
1745	63		31	
1800	65	265	36	124
1815	82		32	
1830	67		41	
1845	54		30	
1900	43	246	32	135
1915	58		20	
1930	42		21	
1945	34		23	
2000	36	170	16	80
2015	31		24	
2030	41		14	
2045	28		23	
2100	35	135	15	76
2115	27		14	
2130	28		13	
2145	30	• • • •	7	
2200	23	108	15	49
2215	22		11	
2230	15		9	
2245	19	_	7	22
2300	18	74	5	32
2315	6		8	
2330	16		4	
2345	13		6	
2400	5	40	5	23
Directional AD7	· .	2,083		1,807

AC Group, LLC

Location:	Judson Road and Mountain Vista
Project #:	42-02
North-South street:	Judson Road
East-West street:	Mountain Vista
Time Period:	1 7:00 - 9:00 AM
Date recorded:	3 December 2002
property of the con-	
Comments:	

Tir.	пе	1,000	the stock	Northb	ound	mans	Marita.	100	None e	South	bound	20 HH				Eastt	oound			4.00		Westl	oound	1000	30.4
Mave	ment	le	ft	th	ru	rig	iht	16	eft	th	ru	rig	iht	le	rft .	th	ru	ric	ght	le	ft	th	ru	rig	tht
Vehicle	э Тура	О	T	С	T	C-	T	С	T	C	T	C	T	С	T	C	T	C	T	С	T	С	T	C	T
7:00 AM	7:15 AM	-	-	122	2	6	0	4	0	46	1	-	-	-	-	-	-	-	-	36	0	(-)	-	30	0
7:15 AM	7:30 AM	-	-	117	3	9	0	2	0	67	1	-		-	-	-	-	-	-	43	2	-	-	23	0
7:30 AM	7:45 AM	-	-	141	4	15	0	3	0	69	1	-	1	1	-	-	-	-	-	47	0	-	-	31	0
7:45 AM	8:00 AM	-	-	117	4	22	0	1	0	71	0	-		-	-	-	-	-	-	20	0	-	-	23	2
8:00 AM	8:15 AM	-	-	100	2	10	0	7	0	61	3	-	-	-	-	-	-	-	-	25	0	-	-	21	0
8:15 AM	8:30 AM	-	-	94	0	9	0	12	0	42	2	-	-	-	-	-	-	-	-	27	2		-	18	0
8:30 AM	8:45 AM	-	-	69	3	9	0	6	0	46	3	-		-	-	-	-	-	-	18	0	-	-	19	0
8:45 AM	9:00 AM	-	-	46	2	3	0	5	0	41	0	-	-	-	-	-	-	-	-	14	0	-	-	13	0
To	tal	- 0	0	806	20	83	0	40	0	443	11	- 0	0	0	0	0	0	0	0	230	4	0	0	178	2
Peak Total		0	0	497	13	52	0	10	0	253	3	0	0	0	0	0	0	0	0	146	2	0	0	107	2
Peak Movem	ent Total	()	5	10	5	2	1	0	2:	56		0		0	0	0		0	1-	48	(0	1	09
Peak Turn Pe	ercent	0	%	91	1%	9	%	4	%	96	6%	0	%	0	%	0	%	0	%	58	3%	0	%	42	2%
Peak Approa	ch Total			563	2					20	66						0					2	57		

Peak Hour

7:00 AM

8:00 AM

Percent Trucks

2%

Time	9 1 1 1 1 1 1 1 1 1		U-Tu	ms		
	Approach:					
Ve	ehicle Type	C	$\sigma T =$	C	T	
7:00 AM	7:15 AM					
7:15 AM	7:30 AM					
7:30 AM	7:45 AM					
7:45 AM	8:00 AM					
8:00 AM	8:15 AM					
8:15 AM	8:30 AM					
8:30 AM	8:45 AM					
8:45 AM	9:00 AM					
Tota	al Back Sees	# O *	0 10	0	0	
Peak Total		0	0	0	0	
Peak Moveme	nt Total		0	0		
Peak Turn Per	cent	0	0% 0%			

96% 4% 256 10 ∏	109 42% 148 58% Mountain Vista
Judson Road	Î (~~) 510 52 91% 9%

AC Group, LLC

Lecation:	Judson Road and Mountain Vista							
Project #:	42-02							
North-South street:	Judson Road							
East-West street:	Mountain Vista							
Time Period:	3 4:00 - 6:00 PM							
Date recorded:	3 December 2002							
salah madah bahwasa								
Comments:								

STATE OF THE STATE	me	1000000		Northb	ound	a.aaaab	Alasho:	40.00		South	bound			50.20		Eastl	ound			0.500		West	bound		ories (II.)
Move	ement -	le le	ft	th	ru	rig	int 🖖	16	eft	th	ru	rig	iht	le	ft	th	ru	riç	ght	16	ft	th	ru	rig	tht
Vehicl	е Туре	C	J. Tata	C	. T	C	T	C	T	C	T	С	T	С	T	С	T	С	T	C	T	C	T	С	Τ
4:00 PM	4:15 PM	-	-	51	3	27	0	17	0	126	3	-	-	-	-	-	•	-	-	13	3	-	-	7	0
4:15 PM	4:30 PM	-	-	68	2	22	0	16	0	96	0	-	-	-		-	-	-	-	17	5	-	-	8	0
4:30 PM	4:45 PM	-	-	67	0	27	0	18	0	77	0	-	-	-	-	-	-	-	-	23	0	-	-	11	0
4:45 PM	5:00 PM	-	-	60	0	38	0	16	0	86	0	-		-	,	-	-	-	-	15	0	-	-	5	0
5:00 PM	5:15 PM	-	-	58	0	40	0	21	0	126	0	-	-	-	-	-	-	-	-	21	1	-	-	6	0
5:15 PM	5:30 PM	-	-	54	0	37	0	19	0	131	0	-	-	-	-	-	-	-	-	18	0	-	-	5	0
5:30 PM	5:45 PM	-	-	61	0	37	0	20	0	158	0	-	-	-	-	-	-	-	-	19	0	-	-	3	0
5:45 PM	6:00 PM	-		53	0	35	0	28	0	110	0	-	-	-	-	-	-	-	-	20	0	-	-	11	0
To	otal	0.0	0	472	5	263	0	155	0	910	3	0	0	0	0	0	0	- 0	* O	146	9	0	-0	56	0
Peak Total		0	0	226	0	149	0	88	0	525	0	0	0	0	0	0	0	0	0	78	1	0	0	25	0
Peak Moven	nent Total	()	22	26	14	49	8	8	5	25)	()		0		0	7	9		0	2	25
Peak Turn P	ercent	0	%	60	1%	40)%	14	1%	86	6%	0	%	0	%	0	%	0	%	76	6%	0	%	24	1%
Peak Approa	ach Total			37	5					6	13)					10	04		

Peak Hour

5:00 PM

6:00 PM

Percent Trucks

1%

- Time	944044644	1.241.151	U-Tu	ms	Ne salat
	Approach:				
anima on almaVe	hicle Type	TO.	H-T	C	T
4:00 PM	4:15 PM				
4:15 PM	4:30 PM				
4:30 PM	4:45 PM				
4:45 PM	5:00 PM				
5:00 PM	5:15 PM				
5:15 PM	5:30 PM				
5:30 PM	5:45 PM				
5:45 PM	6:00 PM				
Total	Page (229)	0.0	110 m	0	- 0
Peak Total		0	0	0	0
Peak Moveme	nt Total		0		0
Peak Turn Per	cent	0	%	0	%

86% 14% 525 88 	25 24%
Judson Road	Î (~) 226 149 60% 40%

ELEMRevised.TGS.txt

Knollcreek Elementary Summary of Trip Generation Calculation

For 800 Students of Elementary School December 11, 2002

	Average	Standard	Adjustment	Driveway
	Rate	Deviation	Factor	Volume
Avg. Weekday 2-Way Volume	2.34	0.00	1.00	1872
7-8 AM Peak Hour Enter	0.50	0.00	1.00	400
7-8 AM Peak Hour Exit	0.39	0.00	1.00	312
7-8 AM Peak Hour Total	0.89	0.00	1.00	712
2-3 PM Peak Hour Enter	0.19	0.00	1.00	152
2-3 PM Peak Hour Exit	0.25	0.00	1.00	200
2-3 PM Peak Hour Total	0.44	0.00	1.00	352
Saturday 2-Way Volume	0.00	0.00	1.00	0
Saturday Peak Hour Enter	0.00	0.00	1.00	0
Saturday Peak Hour Exit	0.00	0.00	1.00	0
Saturday Peak Hour Total	0.00	0.00	1.00	0

Note: A zero indicates no data available. Source: Patricia J. Blattman Elementary School Traffic Study

TRIP GENERATION RATES FROM PATRICIA J. BLATTMAN ELEMENTARY SCHOOL TRAFFIC STUDY

Knollcreek Summary of Trip Generation Calculation For 1250 Students of Middle School / Jr. High School December 11, 2002

	Average Rate		Adjustment Factor	Driveway Volume
Avg. Weekday 2-Way Volume	1.45	1.41	1.00	1813
7-9 AM Peak Hour Enter 7-9 AM Peak Hour Exit 7-9 AM Peak Hour Total	0.26 0.20 0.46	0.00 0.00 0.75	1.00 1.00 1.00	325 250 575
4-6 PM Peak Hour Enter 4-6 PM Peak Hour Exit 4-6 PM Peak Hour Total	0.08 0.08 0.16	0.00 0.00 0.40	1.00 1.00 1.00	100 100 200
Saturday 2-Way Volume	0.00	0.00	1.00	0
Saturday Peak Hour Enter Saturday Peak Hour Exit Saturday Peak Hour Total	0.00	0.00 0.00 0.00	1.00 1.00 1.00	0 0 0

Note: A zero indicates no data available. Source: Institute of Transportation Engineers Trip Generation, 6th Edition, 1997.

TRIP GENERATION BY MICROTRANS

REVISED TRIP GENERATION RATES

	Average	Standard	Adjustment	Driveway
	Rate	Deviation	Factor	Volume
Avg. Weekday 2-Way Volume	2.34	0.00	1.00	2925
7-9 AM Peak Hour Enter	0.51	0.00	1.00	634
7-9 AM Peak Hour Exit	0.38	0.00	1.00	478
7-9 AM Peak Hour Total	0.89	0.55	1.00	1112
3-4 PM Peak Hour Enter	0.21	0.00	1.00	270
3-4 PM Peak Hour Exit	0.23	0.00	1.00	280
3-4 PM Peak Hour Total	0.44	0.00	1.00	550

Note: A zero indicates no data available.

Source: Patricia J. Blattman Elementary School Traffic Study

TRIP GENERATION RATES FROM PATRICIA J. BLATTMAN ELEMENTARY SCHOOL TRAFFIC STUDY

DU883.TGS

Knollcreek Summary of Trip Generation Calculation For 883 Dwelling Units of Single Family Detached Housing December 11, 2002

	Average	Standard	Adjustment	Driveway
	Rate	Deviation	Factor	Volume
Avg. Weekday 2-Way Volume	9.57	3.69	1.00	8450
7-9 AM Peak Hour Enter	0.19	0.00	1.00	168
7-9 AM Peak Hour Exit	0.56	0.00	1.00	494
7-9 AM Peak Hour Total	0.75	0.90	1.00	662
4-6 PM Peak Hour Enter	0.65	0.00	1.00	574
4-6 PM Peak Hour Exit	0.36	0.00	1.00	318
4-6 PM Peak Hour Total	1.01	1.05	1.00	892
Saturday 2-Way Volume	10.09	3.67	1.00	8909
Saturday Peak Hour Enter	0.51	0.00	1.00	450
Saturday Peak Hour Exit	0.43	0.00	1.00	380
Saturday Peak Hour Total	0.94	0.99	1.00	830

Note: A zero indicates no data available. Source: Institute of Transportation Engineers Trip Generation, 6th Edition, 1997.

TRIP GENERATION BY MICROTRANS

DU129.TGS

Knollcreek Summary of Trip Generation Calculation For 129 Dwelling Units of Single Family Detached Housing December 11, 2002

	Average	Standard	Adjustment	Driveway
	Rate	Deviation	Factor	Volume
Avg. Weekday 2-Way Volume	9.57	3.69	1.00	1235
7-9 AM Peak Hour Enter	0.19	0.00	1.00	25
7-9 AM Peak Hour Exit	0.56	0.00	1.00	72
7-9 AM Peak Hour Total	0.75	0.90	1.00	97
4-6 PM Peak Hour Enter	0.65	0.00	1.00	84
4-6 PM Peak Hour Exit	0.36	0.00	1.00	46
4-6 PM Peak Hour Total	1.01	1.05	1.00	130
Saturday 2-Way Volume	10.09	3.67	1.00	1302
Saturday Peak Hour Enter	0.51	0.00	1.00	66
Saturday Peak Hour Exit	0.43	0.00	1.00	55
Saturday Peak Hour Total	0.94	0.99	1.00	121

Note: A zero indicates no data available. Source: Institute of Transportation Engineers Trip Generation, 6th Edition, 1997.

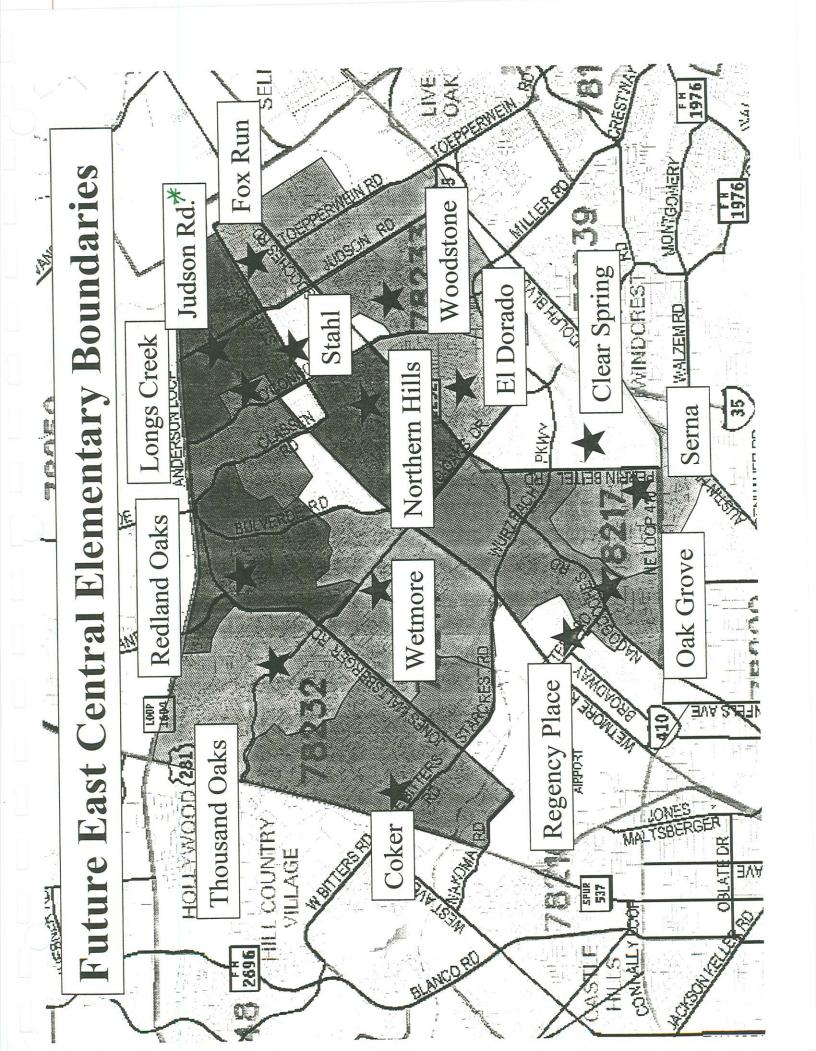
TRIP GENERATION BY MICROTRANS

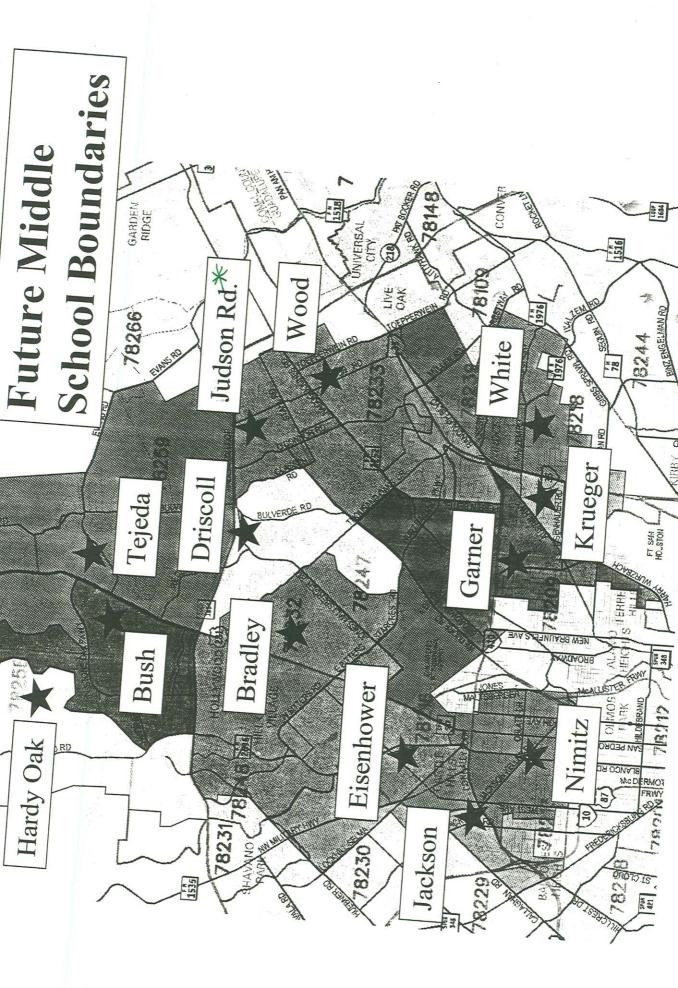
DUall.TXT

STUEBING RANCH
Summary of Trip Generation Calculation
For 1012 Dwelling Units of Single Family Detached Housing
December 11, 2002

2-3PM Projected Rate

	Average	Standard	Adjustment	Driveway
	Rate	Deviation	Factor	Volume
4-6 PM Peak Hour Enter	0.24	0.00	1.00	243
4-6 PM Peak Hour Exit	0.24	0.00	1.00	243
4-6 PM Peak Hour Total	0.48	0.00	1.00	486

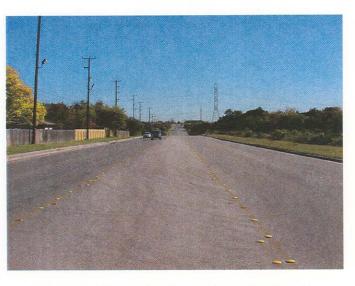

3-4PM Projected Rate

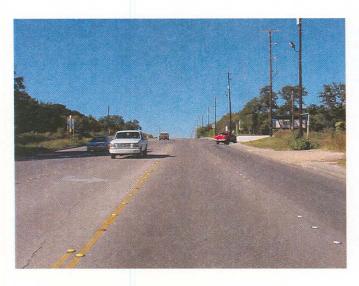

	Average Rate	Standard Deviation	Adjustment Factor	
4-6 PM Peak Hour Enter	0.32	0.00	1.00	324
4-6 PM Peak Hour Exit	0.32	0.00	1.00	324
4-6 PM Peak Hour Total	0.64	0.00	1.00	648

Note: A zero indicates no data available.


APPENDIX C

SCHOOL BOUNDARY AND INTERSECTION PHOTOGRAPHS




Intersection Photos San Antonio, Texas

Northbound Judson Road near Future Knollcreek

Southbound Judson Road near Future Knollcreek

Northbound Judson Road at Mountain Vista

Southbound Judson Road at Mountain Vista

Eastbound Mountain Vista at Judson Road

Westbound Mountain Vista at Judson Road

APPENDIX D CAPACITY ANALYSES

1: Knollcreek & Judson Rd

	A	7	4		ļ	1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR						
Lane Configurations	7	7	- 19	44	朴	7						
Sign Control	Stop			Free	Free							
Grade	0%			0%	0%							
Volume (veh/h)	107	136	152	406	556	271						
Peak Hour Factor	0.92	0.92	0.92	0.81	0.88	0.92						
Hourly flow rate (veh/h)	116	148	165	501	632	295						
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type	None											
Median storage veh)					/www.commence.com							
vC, conflicting volume	1213	316	926									
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
tC, single (s)	6.8	6.9	4.1									
tC, 2 stage (s)												
tF(s)	3.5	3.3	2.2									
p0 queue free %	14	78	77									
cM capacity (veh/h)	135	680	734					***************************************		102551113451145144		
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	116	148	165	251	251	316	316	295				
Volume Left	116	0	165	0	0	0	0	0				
Volume Right	0	148	0	0	0	0	0	295				
cSH	135	680	734	1700	1700	1700	1700	1700				
Volume to Capacity	0.86	0.22	0.23	0.15	0.15	0.19	0.19	0.17				
Queue Length (ft)	138	21	22	0	0	0	0	0				
Control Delay (s)	106.8	11.8	11.3	0.0	0.0	0.0	0.0	0.0				
Lane LOS	F	В	В									
Approach Delay (s)	53.6		2.8			0.0					1000	
Approach LOS	F											
Intersection Summary												
Average Delay			8.6									
Intersection Capacity Uti	lization		43.1%	10	CU Leve	of Ser	vice		Α			

1: Knollcreek & Judson Rd

		>	8			1				
Movement	EBL	EBR	NBL	NBT	SBT	SBR				
Lane Configurations	F.	7	ħ	*	^	7				
Sign Control	Stop			Free	Free					
Grade	0%			0%	0%					
Volume (veh/h)	313	139	270	724	387	50				
Peak Hour Factor	0.92	0.92	0.92	0.81	0.88	0.92				
Hourly flow rate (veh/h)	340	151	293	894	440	54				
Pedestrians										
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage										
Right turn flare (veh)										
Median type	None									
Median storage veh)										
vC, conflicting volume	1474	220	494							
vC1, stage 1 conf vol										
vC2, stage 2 conf vol										
tC, single (s)	6.8	6.9	4.1							
tC, 2 stage (s)										
tF(s)	3.5	3.3	2.2							
p0 queue free %	0	81	72							
cM capacity (veh/h)	85	784	1066							
Direction, Lane #	EB 1	EB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3	4396	
Volume Total	340	151	293	447	447	220	220	54		
Volume Left	340	0	293	0	0	0	0	0		
Volume Right	0	151	0	0	0	0	0	54		
cSH	85	784	1066	1700	1700	1700	1700	1700		
Volume to Capacity	4.00	0.19	0.28	0.26	0.26	0.13	0.13	0.03		
Queue Length (ft)	Err	18	28	0	0	0	0	0		
Control Delay (s)	Err	10.7	9.7	0.0	0.0	0.0	0.0	0.0		
Lane LOS	F	В	Α							
Approach Delay (s)	6927.4		2.4			0.0				
Approach LOS	F									
Intersection Summary										
Average Delay			1567.7		0111	1			A	
Intersection Capacity U	Itilization		57.3%	1	CU Leve	el of Ser	vice		А	

	*	7	*	1		1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ħ	7	ħ	^	*	7		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Fit Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583		
Flt Permitted	0.95	1.00	0.41	1.00	1.00	1.00		
Satd. Flow (perm)	1770	1583	757	3539	3539	1583		
Volume (vph)	313	139	270	724	387	50		
Peak-hour factor, PHF	0.92	0.92	0.92	0.81	0.88	0.92		
Adj. Flow (vph)	340	151	293	894	440	54		
Lane Group Flow (vph)	340	151	293	894	440	54		
Turn Type		pm+ov	pm+pt		r	om+ov		
Protected Phases	4	5	5	2	6	4		
Permitted Phases		4	2			6		
Actuated Green, G (s)	17.6	28.8	44.4	44.4	29.2	46.8		
Effective Green, g (s)	17.6	28.8	44.4	44.4	29.2	46.8		
Actuated g/C Ratio	0.25	0.41	0.63	0.63	0.42	0.67		
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	445	742	642	2245	1476	1149		
v/s Ratio Prot	c0.19	0.03	c0.07	0.25	0.12	0.01		
v/s Ratio Perm	30.10	0.06	c0.22			0.02		
v/c Ratio	0.76	0.20	0.46	0.40	0.30	0.05		
Uniform Delay, d1	24.3	13.2	6.0	6.3	13.6	4.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	7.6	0.1	0.5	0.5	0.5	0.0		
Delay (s)	31.9	13.4	6.5	6.8	14.1	4.0		
Level of Service	C	В	Α	Α	В	Α		
Approach Delay (s)	26.2	_		6.7	13.0			
Approach LOS	C			Α	В			
Intersection Summary				2.00				
HCM Average Control I	Delay		12.6	ŀ	HCM Le	vel of Service	9	100
HCM Volume to Capaci			0.54					
Actuated Cycle Length			70.0		Sum of I	ost time (s)		8
Intersection Capacity U		1	57.3%	I	CU Lev	el of Service		
c Critical Lane Group								

	*	*	1	1	1	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	শ	7	ሻ	个 个	^	7
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	1770	1583	1770	3539	3539	1583
Flt Permitted	0.950		0.312			
Satd. Flow (perm)	1770	1583	581	3539	3539	1583
Satd. Flow (RTOR)		151				54
Volume (vph)	313	139	270	724	387	50
Lane Group Flow (vph)	340	151	293	894	440	54
Turn Type			pm+pt			om+ov
Protected Phases	4		5	2	6	4
Permitted Phases		4	2	<u>-</u>		6
Total Split (s)	28.0	28.0	21.0	42.0	21.0	28.0
Act Effct Green (s)	17.8	17.8	44.2	44.2	29.0	50.8
Actuated g/C Ratio	0.25	0.25	0.63	0.63	0.41	0.73
v/c Ratio	0.75	0.29	0.53	0.40	0.30	0.05
Uniform Delay, d1	24.1	0.0	5.7	6.4	13.7	0.0
Delay	23.3	3.5	6.9	7.3	16.1	1.4
LOS	С	А	A	Α.	В	Α.
Approach Delay	17.2		The second second	7.2	14.5	,
Approach LOS	В			A	В	
Queue Length 50th (ft)	135	0	48	86	63	0
Queue Length 95th (ft)	195	34	108	134	124	10
Internal Link Dist (ft)	407	0-1	100	1120	1677	10
50th Up Block Time (%)	101			1120	1077	
95th Up Block Time (%)						
Turn Bay Length (ft)						
50th Bay Block Time %						
95th Bay Block Time %						
Queuing Penalty (veh)						
Intersection Summary						
Cycle Length: 70						
Actuated Cycle Length: 7						
Offset: 28 (40%), Refere	nced to	phase :	2:NBTL	and 6:S	BT, Sta	rt of Gre
Control Type: Actuated-C		ated				
Maximum v/c Ratio: 0.75						
Intersection Signal Delay						on LOS:
Intersection Capacity Util	ization :	57.3%		IC	U Level	of Serv

ø4

ø5

Splits and Phases:

1: Knollcreek & Judson Rd

ø6

	>	>		İ	J	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	1	7	ሻ	个个	^			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95			
Frt	1.00	0.85	1.00	1.00	0.95			
Flt Protected	0.95	1.00	0.95	1.00	1.00			
Satd. Flow (prot)	1770	1583	1770	3539	3370			
Flt Permitted	0.95	1.00	0.23	1.00	1.00			
Satd. Flow (perm)	1770	1583	436	3539	3370			
Volume (vph)	107	136	152	406	556	271		
Peak-hour factor, PHF	0.92	0.92	0.92	0.81	0.88	0.92		
Adj. Flow (vph)	116	148	165	501	632	295		
Lane Group Flow (vph)	116	148	165	501	927	0		
Turn Type		pm+ov	pm+pt					
Protected Phases	4	5	5	2	6			
Permitted Phases		4	2					
Actuated Green, G (s)	8.4	17.1	53.6	53.6	40.9			
Effective Green, g (s)	8.4	17.1	53.6	53.6	40.9			
Actuated g/C Ratio	0.12	0.24	0.77	0.77	0.58			
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	212	477	500	2710	1969			
v/s Ratio Prot	c0.07	c0.04	0.04	0.14	c0.28			
v/s Ratio Perm		0.05	0.21					
v/c Ratio	0.55	0.31	0.33	0.18	0.47		 	
Uniform Delay, d1	29.0	21.6	3.3	2.2	8.3			
Progression Factor	1.00	1.00	0.69	0.75	1.00			
Incremental Delay, d2	2.9	0.4	0.4	0.1	0.8	# (FFEEDO) # 1		
Delay (s)	31.9	22.0	2.6	1.8	9.2			
Level of Service	С	С	Α	Α	Α			
Approach Delay (s)	26.3			2.0	9.2			
Approach LOS	С			Α	Α			
Intersection Summary								
HCM Average Control D	Delay		9.0	I I	ICM Le	vel of Service	Α	
HCM Volume to Capaci			0.44					
Actuated Cycle Length	(s)		70.0	ξ	Sum of I	ost time (s)	8.0	
Intersection Capacity U			52.5%	I	CU Lev	el of Service	 Α	
c Critical Lane Group								

1: Knollcreek & Judson Rd

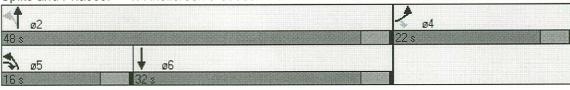
	*	7	1			1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	17	7	ሻ	^ ^	† 1>	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	1770	1583	1770	3539	3369	0
Flt Permitted	0.950		0.158			
Satd. Flow (perm)	1770	1583	294	3539	3369	0
Satd. Flow (RTOR)		136			131	
Volume (vph)	107	136	152	406	556	271
Lane Group Flow (vph)	116	148	165	501	927	0
Turn Type		om+ov	pm+pt			
Protected Phases	4	5	5	2	6	
Permitted Phases		4	2			
Total Split (s)	22.0	16.0	16.0	48.0	32.0	0.0
Act Effct Green (s)	9.6	21.4	54.4	55.2	41.7	
Actuated g/C Ratio	0.14	0.31	0.78	0.79	0.60	
v/c Ratio	0.48	0.26	0.40	0.18	0.45	
Uniform Delay, d1	29.0	1.4	2.1	2.2	6.9	
Delay	27.2	3.7	2.0	2.0	8.1	
LOS	С	Α	Α	Α	Α	
Approach Delay	14.0			2.0	8.1	
Approach LOS	В			Α	Α	
Queue Length 50th (ft)	47	4	15	39	94	
Queue Length 95th (ft)	88	35	6	7	160	
Internal Link Dist (ft)	407			1120	1677	
50th Up Block Time (%)						
95th Up Block Time (%)						
Turn Bay Length (ft)						
50th Bay Block Time %						
95th Bay Block Time %						
Queuing Penalty (veh)						
Intersection Summary				5 T T T		
intersection our intary						

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 30 (43%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.48

Intersection Signal Delay: 6.8

Intersection Capacity Utilization 52.5%

Intersection LOS: A ICU Level of Service A

Splits and Phases: 1: Knollcreek & Judson Rd

	٨		*	1		4	1	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414			सी	7		ની	7
Sign Control		Stop			Stop			Stop	10001000		Stop	
Volume (veh/h)	5	66	28	152	21	104	29	53	137	265	100	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	5	72	30	165	23	113	32	58	149	288	109	24
Direction, Lane#	EB 1	EB 2	WB1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total (vph)	41	66	177	124	89	149	397	24				
Volume Left (vph)	5	0	165	0	32	0	288	0				
Volume Right (vph)	0	30	0	113	0	149	0	24				
Hadj (s)	0.1	-0.2	0.2	-0.5	0.1	-0.6	0.2	-0.6				
Departure Headway (s)	6.9	6.6	6.7	6.0	6.4	5.7	6.2	5.5				
Degree Utilization, x	0.08	0.12	0.33	0.21	0.16	0.24	0.68	0.04				
Capacity (veh/h)	476	498	504	562	531	591	566	628				
Control Delay (s)	9.3	9.3	11.8	9.3	9.4	9.3	20.3	7.5				
Approach Delay (s)	9.3		10.8		9.3		19.6					
Approach LOS	Α		В		Α		С					
Intersection Summary								200				
Delay			13.8				dominio		12.4.6	B (44) 14 (4)		
HCM Level of Service			В									
Intersection Capacity Uti	lization		50.8%	10	CU Leve	of Ser	vice		Α			

	A		7	1		٨.	1		r	~	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			413			ની	7		ની	7
Sign Control		Stop			Stop			Stop			Stop	
Volume (veh/h)	6	28	10	58	29	119	14	52	74	110	38	12
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	7	30	11	63	32	129	15	57	80	120	41	13
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total (vph)	22	26	79	145	72	80	161	13				
Volume Left (vph)	7	0	63	0	15	0	120	0				
Volume Right (vph)	0	11	0	129	0	80	0	13				
Hadj (s)	0.1	-0.2	0.2	-0.5	0.1	-0.6	0.2	-0.6				
Departure Headway (s)	5.7	5.3	5.6	4.9	5.4	4.8	5.5	4.8				
Degree Utilization, x	0.03	0.04	0.12	0.20	0.11	0.11	0.25	0.02				
Capacity (veh/h)	592	629	611	700	631	711	623	714			***************************************	
Control Delay (s)	7.7	7.4	8.1	7.9	7.9	7.2	9.1	6.6				
Approach Delay (s)	7.5		8.0		7.5		8.9					
Approach LOS	Α		Α		Α		Α					
Intersection Summary												
Delay			8.1									
HCM Level of Service			Α									
Intersection Capacity Ut	ilization		32.4%	- 1	CU Lev	el of Ser	vice		Α			

	1	-	*	1	-	*	1	1	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4T÷			€ Î}			4	ř		स	7
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Volume (veh/h)	5	66	28	152	21	104	29	53	137	265	100	22
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	5	72	30	165	23	113	32	58	149	288	109	24
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	THE !
Median storage veh)												accomplete to the designation
vC, conflicting volume	136			102			518	564	51	634	523	68
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
tC, single (s)	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			89			90	85	85	0	73	98
cM capacity (veh/h)	1446			1488			312	384	1006	251	405	981
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2				
Volume Total	41	66	177	124	89	149	397	24				
Volume Left	5	0	165	0	32	0	288	0				
Volume Right	0	30	0	113	0	149	0	24				
cSH	1446	1700	1488	1700	355	1006	280	981				
Volume to Capacity	0.00	0.04	0.11	0.07	0.25	0.15	1.42	0.02				
Queue Length (ft)	0	0	9	0	24	13	538	2				
Control Delay (s)	1.0	0.0	7.3	0.0	18.5	9.2	242.4	8.8				
Lane LOS	Α		Α		С	Α	F	Α				
Approach Delay (s)	0.4		4.3		12.7		229.1					
Approach LOS					В		F					
Intersection Summary												
Average Delay			94.4						170			
Intersection Capacity Ut	ilization		50.8%	10	CU Leve	el of Sei	rvice		Α			

Baseline

)			1			1		1			1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	^ }		ħ	∱ β			ની	7		્રન	7
Sign Control		Free			Free			Stop			Stop 0%	
Grade		0%			0%	440	4.4	0% 52	74	110	38	12
Volume (veh/h)	6	28	10	58	29 0.92	119 0.92	14 0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor	0.92 7	0.92	0.92	0.92	32	129	15	57	80	120	41	13
Hourly flow rate (veh/h) Pedestrians	-1	30	11	03	32	123	10	01	00	120		
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)								000	04	250	077	90
vC, conflicting volume	161			41			224	336	21	359	277	80
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	4.1			4.1			7.5	6.5	6.9	7.5	6.5	6.9
tC, single (s) tC, 2 stage (s)	4.1			4.1			7.0	0.0	0.0	7.0	0.0	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100			96			98	90	92	75	93	99
cM capacity (veh/h)	1416			1566			643	557	1052	471	602	963
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB3	NB 1	NB 2	SB 1	SB 2		
Volume Total	7	20	21	63	21	140	72	80	161	13		
Volume Left	7	0	0	63	0	0	15	0	120	0		
Volume Right	0	0	11	0	0	129	0	80	0	13		
cSH	1416	1700	1700	1566	1700	1700	574	1052	498	963		
Volume to Capacity	0.00	0.01	0.01	0.04	0.01	0.08	0.13	0.08	0.32	0.01		
Queue Length (ft)	0	0	0	3	0	0	11 12.2	6 8.7	35 15.6	8.8		
Control Delay (s)	7.6	0.0	0.0	7.4	0.0	0.0	12.2 B	6. <i>1</i>	15.6 C	6.6 A		
Lane LOS	A 1.0			A 2.1			10.3	^	15.1	Л		
Approach Delay (s) Approach LOS	1.0			2.1			В		C			
Intersection Summary												
Average Delay			7.9		0111	-1 -6 0			۸			
Intersection Capacity Ut	ilization		32.3%		CU Lev	el of Se	vice		А			

	•		7	1	4	×.	4		r	\	J	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^ }		15	^ }			4	7		सी	đ
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1000	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frt	1.00	0.96		1.00	0.88			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.98	1.00		0.96	1.00
Satd. Flow (prot)	1770	3383		1770	3098			963	1583		1798	1583
Flt Permitted	0.67	1.00		0.69	1.00			0.85	1.00		0.73	1.00
Satd. Flow (perm)	1240	3383		1281	3098			835	1583		1357	1583
Volume (vph)	5	66	28	152	21	104	29	53	137	265	100	22
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	72	30	165	23	113	32	58	149	288	109	24
Lane Group Flow (vph)	5	102	0	165	136	0	0	90	149	0	397	24
Turn Type	Perm			Perm			Perm		Perm	Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)	12.0	12.0		12.0	12.0			28.7	28.7		28.7	28.7
Effective Green, g (s)	12.0	12.0		12.0	12.0			28.7	28.7		28.7	28.7
Actuated g/C Ratio	0.25	0.25		0.25	0.25			0.59	0.59		0.59	0.59
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	306	834		316	763			492	933		800	933
v/s Ratio Prot		0.03			0.04							
v/s Ratio Perm	0.00			c0.13				0.11	0.09		c0.29	0.02
v/c Ratio	0.02	0.12		0.52	0.18			0.18	0.16		0.50	0.03
Uniform Delay, d1	13.9	14.3		15.9	14.5			4.6	4.5		5.8	4.2
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.1		1.6	0.1			0.2	0.1		0.5	0.0
Delay (s)	13.9	14.3		17.4	14.6			4.8	4.6		6.3	4.2
Level of Service	В	В		В	В			Α	Α		Α	Α
Approach Delay (s)		14.3			16.1			4.7			6.2	
Approach LOS		В			В			Α			Α	
Intersection Summary												
HCM Average Control [9.5		HCM Le	vel of S	ervice		Α			
HCM Volume to Capac			0.50						~ ~			
Actuated Cycle Length			48.7			lost time	C. C		8.0			
Intersection Capacity U		1	50.8%		ICU Lev	el of Se	rvice		Α			
c Critical Lane Group												

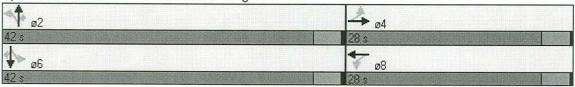
	•		*	1		*	1		1	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^		ሻ	↑ ↑			ર્ન	7		ની	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1000	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00	1.00		1.00	1.00
Frt	1.00	0.96		1.00	0.88			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00			0.99	1.00		0.96	1.00
Satd. Flow (prot)	1770	3397		1770	3114			970	1583		1796	1583
Flt Permitted	0.65	1.00		0.73	1.00			0.95	1.00		0.78	1.00
Satd. Flow (perm)	1211	3397		1358	3114			930	1583		1455	1583
Volume (vph)	6	28	10	58	29	119	14	52	74	110	38	12
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	7	30	11	63	32	129	15	57	80	120	41	13
Lane Group Flow (vph)	7	41	0	63	161	0	0	72	80	0	161	13
Turn Type	Perm	門台灣	1988	Perm	- No. 10		Perm		Perm	Perm		Perm
Protected Phases		4			8		******************	2			6	
Permitted Phases	4			8			2		2	6	10-10-10	6
Actuated Green, G (s)	7.6	7.6		7.6	7.6			18.3	18.3		18.3	18.3
Effective Green, g (s)	7.6	7.6		7.6	7.6			18.3	18.3		18.3	18.3
Actuated g/C Ratio	0.22	0.22		0.22	0.22			0.54	0.54		0.54	0.54
Clearance Time (s)	4.0	4.0		4.0	4.0			4.0	4.0		4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	271	762	6-66-6	304	698			502	855	4-4-6	785	855
v/s Ratio Prot		0.01			c0.05							
v/s Ratio Perm	0.01			0.05				0.08	0.05		c0.11	0.01
v/c Ratio	0.03	0.05		0.21	0.23			0.14	0.09		0.21	0.02
Uniform Delay, d1	10.3	10.3		10.7	10.8			3.9	3.8		4.0	3.6
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0		0.3	0.2			0.1	0.0		0.1	0.0
Delay (s)	10.3	10.4		11.0	10.9			4.0	3.8		4.2	3.6
Level of Service	В	В		В	В			Α	Α		Α	Α
Approach Delay (s)		10.3			11.0			3.9			4.1	
Approach LOS		В			В			Α			Α	
Intersection Summary					335							
HCM Average Control D			7.1	Н	CM Lev	el of Se	rvice		Α			
HCM Volume to Capacit			0.21									
Actuated Cycle Length (33.9	S	um of lo	st time	(s)		8.0			
Intersection Capacity Uti	lization		32.3%	IC	U Leve	of Serv	/ice		Α			
c Critical Lane Group										高温 计	645	1000

1/2/2003						
1/////////	4	10	10	0	0	0
	1	11	1	()	()	. 4

	*		*	1	4	*	1	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካ	† }		ነ	† 1>			सी	7		4	7
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	1770	3383	0	1770	3097	0	0	964	1583	0	1798	1583
Flt Permitted	0.666			0.688				0.840			0.728	
Satd. Flow (perm)	1241	3383	0	1282	3097	0	0	824	1583	0	1356	1583
Satd. Flow (RTOR)		30			113				149			24
Volume (vph)	5	66	28	152	21	104	29	53	137	265	100	22
Lane Group Flow (vph)	5	102	0	165	136	0	0	90	149	0	397	24
Turn Type	Perm			Perm			Perm		Perm	Perm		Perm
Protected Phases		4			8			2		102.00	6	
Permitted Phases	4			8			2		2	6		6
Total Split (s)	28.0	28.0	0.0	28.0	28.0	0.0	42.0	42.0	42.0	42.0	42.0	42.0
Act Effct Green (s)	13.0	13.0		13.1	13.1			29.1	29.1		29.1	29.1
Actuated g/C Ratio	0.25	0.25		0.25	0.25			0.58	0.58		0.58	0.58
v/c Ratio	0.02	0.12		0.51	0.16			0.19	0.15		0.50	0.03
Uniform Delay, d1	13.8	10.0		15.9	2.4			4.6	0.0		5.8	0.0
Delay	11.2	7.8		11.6	4.0			6.2	1.5		7.3	3.0
LOS	В	Α		В	Α			Α	Α		Α	Α
Approach Delay		8.0			8.2			3.3			7.0	
Approach LOS		Α			Α			Α			Α	
Queue Length 50th (ft)	1	4		21	1			8	0		43	0
Queue Length 95th (ft)	7	22		86	17			35	0		145	0
Internal Link Dist (ft)		2837			463			569			506	
50th Up Block Time (%)												
95th Up Block Time (%)												
Turn Bay Length (ft)				100								
50th Bay Block Time %												
95th Bay Block Time %				1%								
Queuing Penalty (veh)												

Intersection Summary

Cycle Length: 70


Actuated Cycle Length: 50.1

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.51

Intersection Signal Delay: 6.6 Intersection Capacity Utilization 50.8% Intersection LOS: A ICU Level of Service A

Splits and Phases: 4: Knollcreek & Neighborhood

PAPE-DAWSON ENGINEERS, INC. 10: Knollcreek & Elem. DW #2

	-	7	1		1	1	
	EBT	EBR	WBL	WBT	NBL	NBR	
Movement	†		শ	44	ሻ	7	
Lane Configurations	Free			Free	Stop		
Sign Control	0%			0%	0%		
Grade	416	52	68	250	27	66	
Volume (veh/h)	0.92	0.92	0.92	0.92	0.92	0.92	
Peak Hour Factor	452	57	74	272	29	72	
Hourly flow rate (veh/h)	452	J1					
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)					None		
Median type							
Median storage veh)			509		764	254	
vC, conflicting volume			000				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol			4.1		6.8	6.9	
tC, single (s)			7.1				
tC, 2 stage (s)			2.2		3.5	3.3	
tF(s)			93		91	90	
p0 queue free %			1053		316	745	
cM capacity (veh/h)				_			NB 2
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3		72
Volume Total	301	207	74		136		0
Volume Left	0	0					72
Volume Right	0						745
cSH	1700						0.10
Volume to Capacity	0.18	0.12			CONTRACTOR STATE		0.10
Queue Length (ft)	0	C					10.3
Control Delay (s)	0.0	0.0	8.7	0.0	0.0		
Lane LOS			F			С	В
Approach Delay (s)	0.0)	1.9	9		12.4	
Approach LOS				15-15-16-1	4.9	В	
Intersection Summary			2.	0		ALC: N	
Average Delay			31.79		ICILL	evel of Se	rvice
Intersection Capacity	Utilizatio	on	31.17	0	100 E	,, 5, 50	

		*	1		1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^		1	^	ħ	7		
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	192	20	26	182	24	36		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (veh/h)	209	22	28	198	26	39		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			230		375	115		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol			4.4		0.0	6.9		
tC, single (s)			4.1		6.8	6.9		
tC, 2 stage (s)			2.2		3.5	3.3		
tF (s)			98		96	96		
p0 queue free %			1335		586	915		
cM capacity (veh/h)							•••	
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	NB 2	
Volume Total	139	91	28	99	99	26	39 0	
Volume Left	0	0	28	0	0	26	0 39	
Volume Right	0	22	0	0	1700	0 586	915	
cSH	1700	1700	1335	1700	1700	0.04	0.04	
Volume to Capacity	0.08	0.05	0.02	0.06		0.04	3	
Queue Length (ft)	0	0	2	0	0		9.1	
Control Delay (s)	0.0	0.0	7.8	0.0	0.0	11.4 B	9.1 A	
Lane LOS	0.0		1.0			10.0	А	
Approach LOS	0.0		1.0			10.0 B		
Approach LOS						D		
Intersection Summary								
Average Delay			1.7		0111-	1 - 6 0		
Intersection Capacity Ut	ilization		16.5%	Į.	CU Leve	el of Ser	vice	

		5	1		1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	∱ 1≽		ħ	ተተ	N N	7		-000
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	488	159	31	136	53	96		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (veh/h)	530	173	34	148	58	104		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)	*****************							
vC, conflicting volume			703		758	352		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.8	6.9		
tC, 2 stage (s)					0.5			
tF (s)			2.2		3.5	3.3		
p0 queue free %			96		83	84		
cM capacity (veh/h)			890		330	645		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB3	NB 1	NB 2	
Volume Total	354	350	34	74	74	58	104	
Volume Left	0	0	34	0	0	58	0	
Volume Right	0	173	0	0	0	0	104	
cSH in	1700	1700	890	1700	1700	330	645	
Volume to Capacity	0.21	0.21	0.04	0.04	0.04	0.17	0.16	
Queue Length (ft)	0	0	3	0	0	16	14	
Control Delay (s)	0.0	0.0	9.2	0.0	0.0	18.2 C	11.7	
Lane LOS	0.0		A				В	
Approach Delay (s)	0.0		1.7			14.0		
Approach LOS						В		
Intersection Summary			5.5					
Average Delay			2.5					
Intersection Capacity Ut	ilization		33.3%	[(CU Leve	el of Ser	vice	Α

	-	*	1		*	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	1		ካ	ተተ	7	ŕ		
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	173	62	44	203	68	19		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (veh/h)	188	67	48	221	74	21		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			255		428	128		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.8	6.9		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			96		86	98		
cM capacity (veh/h)			1307		535	899		
Direction, Lane #	EB 1	EB 2	WB1	WB 2		NB 1	NB 2	
Volume Total	125	130	48	110	110	74	21	
Volume Left	0	0	48	0	0	74	0	
Volume Right	0	67	0	0	0	0	21	
cSH	1700	1700	1307	1700	1700	535	899	
Volume to Capacity	0.07	0.08	0.04	0.06	0.06	0.14	0.02	
Queue Length (ft)	0	0	3	0	0	12	2	
Control Delay (s)	0.0	0.0	7.9	0.0	0.0	12.8	9.1	
Lane LOS			Α			В	Α	
Approach Delay (s)	0.0		1.4			12.0		
Approach LOS						В		
Intersection Summary								
Average Delay			2.4					
Intersection Capacity Util	lization		18.1%	IC	U Leve	l of Sen	vice	
					2010	3. 331		

		7	1		1	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	ት β		ř	^	ነ	7			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Volume (veh/h)	375	209	32	129	38	96			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (veh/h)	408	227	35	140	41	104			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)		*							
Median type					None				
Median storage veh)									
vC, conflicting volume			635		661	317			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
tC, single (s)			4.1		6.8	6.9			ationistical in
tC, 2 stage (s)									
tF (s)			2.2		3.5	3.3		******************	
p0 queue free %			96		89	85			
cM capacity (veh/h)			944		381	678			
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB3	NB 1	NB 2		
Volume Total	272	363	35	70	70	41	104		
Volume Left	0	0	35	0	0	41	0		
Volume Right	0	227	0	0	, 0	0	104		CONTRACTOR
cSH	1700	1700	944	1700	1700	381	678		
Volume to Capacity	0.16	0.21	0.04	0.04	0.04	0.11	0.15		
Queue Length (ft)	0	0	3	0	0	9	14		
Control Delay (s)	0.0	0.0	9.0	0.0	0.0	15.6	11.3		
Lane LOS			A			C	В		
Approach Delay (s)	0.0		1.8			12.5			
Approach LOS						В			
Intersection Summary									
Average Delay			2.2						
Intersection Capacity Ut	ilization		31.7%](CU Leve	el of Ser	vice		Α

		*	1		1	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	^		ካ	44	1	7				
Sign Control	Free			Free	Stop					
Grade	0%			0%	0%					
Volume (veh/h)	173	62	44	203	68	19	1000			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92				
Hourly flow rate (veh/h)	188	67	48	221	74	21				
Pedestrians										
Lane Width (ft)										
Walking Speed (ft/s)										
Percent Blockage										
Right turn flare (veh)									SECURE COLUMN SECURE	
Median type					None					
Median storage veh)			055		100	400				
vC, conflicting volume			255		428	128				
vC1, stage 1 conf vol										
vC2, stage 2 conf vol			4.1		6.8	6.9				
tC, single (s)			4.1		0.0	0.9				
tC, 2 stage (s) tF (s)			2.2		3.5	3.3				
p0 queue free %			96		86	98				
cM capacity (veh/h)			1307		535	899				
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	WB 3	NB 1	NB 2			
Volume Total	125	130	48	110	110	74	21			
Volume Left	0	0	48	0	0	74 0	0 21			
Volume Right	0 1700	67 1700	0 1307	0 1700	0 1700	535	899			
Volume to Capacity	0.07	0.08	0.04	0.06	0.06	0.14	0.02			
Queue Length (ft)	0.07	0.08	0.04	0.06	0.06	12	0.02			
Control Delay (s)	0.0	0.0	7.9	0.0	0.0	12.8	9.1			
Lane LOS	0.0	0.0	7.5 A	0.0	0.0	12.0 B	9.1 A			
Approach Delay (s)	0.0		1.4			12.0	/ \			
Approach LOS	0.0					В			holder of	
Intersection Summary										
			2.4							
Average Delay Intersection Capacity Uti	ilization		18.1%	17	CIII ove	el of Ser	vico	Α		
intersection Capacity Of	iiiZaliUI1		10.170	10	JO LEVE	51 01 361	VICE	^		

	7		*				1	1	1	1		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		सी	7		ર્ન	آم	ሻ	**		*	^	
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Volume (veh/h)	143	24	28	148	69	122	127	576	52	10	423	7
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	155	26	30	161	75	133	138	626	57	11	460	8
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
vC, conflicting volume	1245	1444	234	1226	1420	341	467			683		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	77	96	0	36	80	87			99		
cM capacity (veh/h)	46	113	768	96	117	655	1090			906		
Direction, Lane #	EB 1	EB 2	WB 1	WB2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3		
Volume Total	182	30	236	133	138	417	265	11	307	161		
Volume Left	155	0	161	0	138	0	200	11	0	0		
Volume Right	0	30	0	133	0	0	57	0	0	8		
cSH	50	768	101	655	1090	1700	1700	906	1700	1700		
Volume to Capacity	3.62	0.04	2.32	0.20	0.13	0.25	0.16	0.01	0.18	0.09		
Queue Length (ft)	Err	3	525	19	11	0.20	0.10	1	0.10	0.00		
Control Delay (s)	Err	9.9	693.0	11.9	8.8	0.0	0.0	9.0	0.0	0.0		
Lane LOS	F	A	F	В	Α.	0.0	0.0	Α	0.0	0.0		
Approach Delay (s)	8564.7		447.9		1.5			0.2				
Approach LOS	F		F					7.2				
Intersection Summary												
Average Delay			1054.5			***************************************						
Intersection Capacity U	tilization		52.0%	- 10	CU Leve	el of Ser	vice		Α			

	*		*	1		*.	1	Í	1	\	J.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካ	- 43→			લ	7		414			414	
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Volume (veh/h)	143	24	28	148	69	122	127	576	52	10	423	7
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	155	26	30	161	75	133	138	626	57	11	460	8
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type	ilini tati ilini	None			None							
Median storage veh)												
vC, conflicting volume	1245	1444	234	1226	1420	341	467			683		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	7.5	0.5	0.0	7.5	0.5							
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)	2.5	4.0	2.2	2.5	4.0	2.0	0.0			0.0		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0 46	77 113	96 768	0	36	80	87			99		
cM capacity (veh/h)	40	113	700	96	117	655	1090			906		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	SB 1	SB 2		nia manganya ya k	on completions	
Volume Total	104	108	236	133	451	370	241	238		F 7 11 11		
Volume Left	104	52	161	0	138	0	11	0				
Volume Right	0	30	0	133	0	57	0	8				Brake Str
cSH	46	77	101	655	1090	1700	906	1700				
Volume to Capacity	2.26	1.40	2.32	0.20	0.13	0.22	0.01	0.14				
Queue Length (ft)	270	215	525	19	11	0	1	0				
Control Delay (s)	766.2	334.7	693.0	11.9	3.6	0.0	0.5	0.0				
Lane LOS	F	F	F	В	Α		Α					
Approach Delay (s)	545.7		447.9		2.0		0.3				600	
Approach LOS	F		. F									
Intersection Summary												
Average Delay			150.3						Xer a			
Intersection Capacity Uti	ilization		65.9%	10	CU Leve	of Ser	vice		В			

	٠		7	1		×	1		1	١,		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		सी	7		स	7	দ	ተተ		ካ	十个	
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Volume (veh/h)	14	19	66	79	19	38	42	382	81	54	556	29
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (veh/h)	15	21	72	86	21	41	46	415	88	59	604	32
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage					a e							
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
vC, conflicting volume	1088	1332	318	1052	1304	252	636			503		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	88	85	89	35	86	94	95			94		
cM capacity (veh/h)	132	138	678	132	143	748	943			1057		
											an (2000) (To a Senial (2000)	orkollerin eriterini
Direction, Lane #	EB 1	EB 2	WB1	WB 2	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3		
Volume Total	36	72	107	41	46	277	226	59	403	233		
Volume Left	15	0	86	0	46	0	0	59	0	0		
Volume Right	0	72	0	41	0	0	88	0	0	32		
cSH	135	678	134	748	943	1700	1700	1057	1700	1700		
Volume to Capacity	0.27	0.11	0.79	0.06	0.05	0.16	0.13	0.06	0.24	0.14		
Queue Length (ft)	25	9	121	4	4	0	0	4	0	0		
Control Delay (s)	41.0	10.9	93.8	10.1	9.0	0.0	0.0	8.6	0.0	0.0		
Lane LOS	Ε	В	F	В	Α			Α				
Approach Delay (s)	21.0		70.4		0.7			0.7				
Approach LOS	С		F									
Intersection Summary												
Average Delay			9.1						144.10114			
Intersection Capacity Uti	lization		38.0%	10	CU Leve	el of Ser	vice		A			

	4		>	1					1	\		1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	Þ		শ	- }-		স	† 1>		ነ	↑ ↑	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95		1.00	0.95	
Frt	1.00	0.92		1.00	0.90		1.00	0.99		1.00	1.00	
FIt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1713		1770	1684		1770	3495		1770	3530	
Flt Permitted	0.62	1.00		0.48	1.00		0.47	1.00		0.35	1.00	
Satd. Flow (perm)	1147	1713		895	1684	***************************************	873	3495		650	3530	MATERIAL PROPERTY.
Volume (vph)	143	24	28	148	69	122	127	576	52	10	423	7
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	155	26	30	161	75	133	138	626	57	11	460	8
Lane Group Flow (vph)	155	56	0	161	208	0	138	683	0	11	468	0
Turn Type	pm+pt			pm+pt	1000		Perm			Perm		
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	16.9	7.2		24.1	10.8		37.5	37.5		37.5	37.5	
Effective Green, g (s)	16.9	7.2		24.1	10.8		37.5	37.5		37.5	37.5	
Actuated g/C Ratio	0.24	0.10		0.34	0.15		0.54	0.54		0.54	0.54	
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	***************************************	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	363	176		474	260		468	1872		348	1891	
v/s Ratio Prot	c0.06	0.03		c0.06	c0.12			c0.20			0.13	
v/s Ratio Perm	0.04			0.05			0.16			0.02		
v/c Ratio	0.43	0.32		0.34	0.80		0.29	0.36		0.03	0.25	
Uniform Delay, d1	22.1	29.1		16.7	28.6		9.0	9.4		7.7	8.7	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		0.42	0.36	
Incremental Delay, d2	0.8	1.0		0.4	16.0		1.6	0.6		0.2	0.3	
Delay (s)	22.9	30.2		17.1	44.5		10.6	9.9		3.4	3.5	
Level of Service	С	С		В	D		В	Α		Α	A	
Approach Delay (s)		24.8			32.6			10.0			3.5	
Approach LOS		С			С			В			A	
Intersection Summary												
HCM Average Control D	elay		14.4	H	ICM Lev	el of Se	rvice		В			
HCM Volume to Capacit	y ratio		0.46									
Actuated Cycle Length (70.0	S	um of lo	st time	(s)		12.0			
Intersection Capacity Ut	ilization		56.5%		CU Leve		`		Α			
c Critical Lane Group												

	*		7	1		4.	4		1		V	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካ	ß			4	7	ħ	ት ቕ		দ	∱ Ъ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0			4.0	4.0	4.0	4.0		4.0	4.0	ASSESSMENT OF THE PARTY OF THE
Lane Util. Factor	1.00	1.00			1.00	1.00	1.00	0.95		1.00	0.95	
Frt	1.00	0.92			1.00	0.85	1.00	0.98		1.00	1.00	
Flt Protected	0.95	1.00			0.96	1.00	0.95	1.00	50 E 16 E	0.95	1.00	
Satd. Flow (prot)	1770	1718			1791	1583	1770	3484		1770	3536	
Flt Permitted	0.38	1.00			0.75	1.00	0.42	1.00		0.45	1.00	
Satd. Flow (perm)	702	1718			1393	1583	777	3484		834	3536	
Volume (vph)	75	13	14	148	36	122	65	451	52	10	392	3
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	82	14	15	161	39	133	71	490	57	11	426	3
Lane Group Flow (vph)	82	29	0	0	200	133	71	547	0	11	429	0
Turn Type	pm+pt			pm+pt		Perm	pm+pt			Perm		
Protected Phases	7	4	***************************************	3	8		5	2			6	
Permitted Phases	4			8		8	2			6		
Actuated Green, G (s)	24.0	24.0			13.5	13.5	38.0	38.0		30.0	30.0	
Effective Green, g (s)	24.0	24.0			13.5	13.5	38.0	38.0		30.0	30.0	
Actuated g/C Ratio	0.34	0.34			0.19	0.19	0.54	0.54		0.43	0.43	
Clearance Time (s)	4.0	4.0			4.0	4.0	4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	340	589			269	305	479	1891		357	1515	
v/s Ratio Prot	c0.02	0.02					0.01	c0.16			0.12	
v/s Ratio Perm	0.06				c0.14	0.08	0.07			0.01		
v/c Ratio	0.24	0.05			0.74	0.44	0.15	0.29		0.03	0.28	
Uniform Delay, d1	16.2	15.4			26.6	24.9	7.9	8.7		11.6	13.0	
Progression Factor	1.00	1.00			1.00	1.00	1.00	1.00		0.52	0.54	
Incremental Delay, d2	0.4	0.0			10.6	1.0	0.1	0.4		0.1	0.4	
Delay (s)	16.6	15.4			37.2	25.9	8.0	9.1		6.2	7.4	
Level of Service	В	В			D	С	А	Α		Α	Α	
Approach Delay (s)		16.3			32.7			8.9			7.4	
Approach LOS		В			С			Α			Α	
Intersection Summary												
HCM Average Control D	elay		14.3	Н	CM Lev	el of Se	ervice		В			
HCM Volume to Capaci			0.39									
Actuated Cycle Length (70.0	S	um of lo	st time	(s)		12.0			
Intersection Capacity Ut	ilization	4	46.3%			of Ser			Α			
c Critical Lane Group			100									- 4000000

APPENDIX E TRAFFIC SIGNAL WARRANT STUDY

TRAFFIC SURVEY - COUNT ANALYSIS 1980 TMUTCD WARRANTS (Rev. 5)

County:	Bexar	Mapsco Coordinates:	519-A4
City:	San Antonio	Survey Date: 2005 PRO	DJECTED
		# Approach Lanes	85% Speed
Major	JUDSON ROAD	2	40
Minor	KNOLLCREEK	2	30

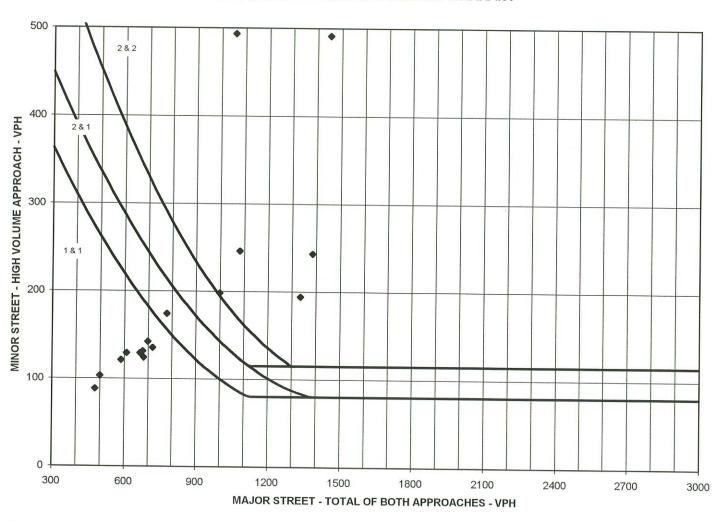
Eight High Hours: Lowest Volume of 8 hour study is the 8th highest hour. Major and minor 8th high hours may not be the same hour.

Time Begins		Street proaches Peds.		Street ol. App. Peds.
7:00 AM	1,454		491	
4:00 PM	1,385		243	
8:00 AM	1,058		493	
5:00 PM	1,336		194	
3:00 PM	1,081		246	
6:00 PM	999		198	
2:00 PM	778		174	
12:00 PM	719		135	

Comments PROJECTED CONDITIONS FOR 2005 WITH ELEM SCHOOL & MIDDLE SCHOOL, PLUS BUILDOUT OF STEUBING RANCH SATISFY WARRANTS FOR SIGNALIZATION. RECOMMENDATION: THE INSTALLATION OF A TRAFFIC SIGNAL IS EXPECTED TO IMPROVE THE OPERATION AND SAFETY OF THE INTERSECTION.

Warrant 1: Minimum Vehicular Volume

	Major 9	St Both App	roaches		Minor S	St High Volu	me Appr.	
of Lanes	8	th Highest Ho	our		8	8th Highest Ho	our	
Minor	Req	uired	Existing		Re	quired	Existing	
Street	Urban	Rural		%	Urban	Rural		%
1	500	350	_		150	105	-	
1	600	420	-		150	105	-	
2 or >	600	420	719	171%	200	140	135	96%
2 or >	500	350	_		200	140		
	Street 1 1 2 or >	of Lanes 8 Minor Request Street Urban 1 500 1 600 2 or > 600	of Lanes 8th Highest Howard Minor Required Street Urban Rural 1 500 350 1 600 420 2 or > 600 420	Minor Required Existing Street Urban Rural 1 500 350 - 1 600 420 - 2 or > 600 420 719	Of Lanes 8th Highest Hour Minor Required Existing Street Urban Rural % 1 500 350 - 1 600 420 - 2 or > 600 420 719 171%	Minor Required Existing Reservation Street Urban Rural % Urban 1 500 350 - 150 1 600 420 - 150 2 or > 600 420 719 171% 200	Minor Required Existing Required Street Urban Rural % Urban Rural 1 500 350 - 150 105 1 600 420 - 150 105 2 or > 600 420 719 171% 200 140	Minor Required Existing Required Existing Street Urban Rural % Urban Rural 1 500 350 - 150 105 - 1 600 420 - 150 105 - 2 or > 600 420 719 171% 200 140 135

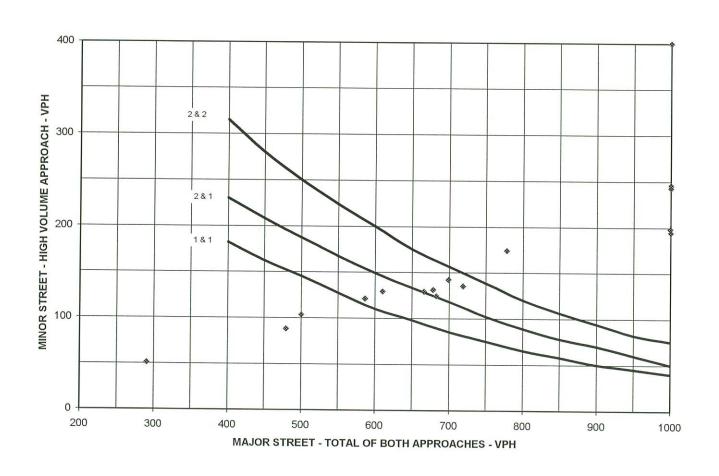

NOT SATISFIED

Warrant 2:	Interruption of	f Continuous	Traffic						
		Major S	St Both App	roaches		Minor S	St High Vol	ume Appr.	
Numbe	r of Lanes	8	th Highest Ho	our		8	8th Highest F	Hour	
Major	Minor	Req	uired	Existing		Re	quired	Existing	
Street	Street	Urban	Rural		%	Urban	Rural		%
1	1	750	525	<u> </u>		75	52		
2 or >	1	900	630	-		75	52	_	
2 or >	2 or >	900	630	719	114%	100	70	135	193%
1	2 or >	750	525			100	70		
								SATISFIED	

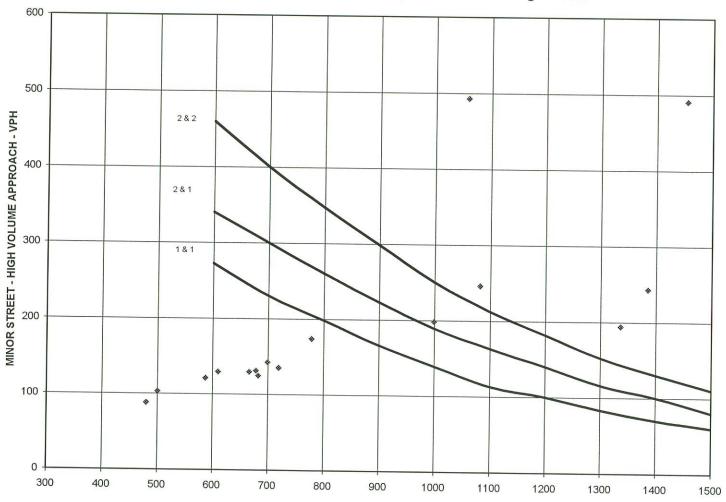
Warrant 3:	Minimum Pe	destrian Volume		
	M	lajor Street Traffic		/alk Across Maj. St.
			Required	- 30 = 7.4
Yes	No	< than 60 gaps/hr. in traffic stream		<3.5" Existing
Yes	No	> than 300 ft. to nearest signal?	Four Hours 100	50%
			One Hour 190	95
				NOT SATISFIED
Warrant 4:	School Cros	sing		
		Is the number of adequate gaps in the tr	raffic stream during	
Yes	No	the period when the children are using the		
		than the number of minutes in the same	period?	NOT APPLICABLE
Warrant 5:	Progressive	Movement		
Yes	No	Are the adjacent signals in a signal syste		
Yes	No	Would the resultant spacing be 1000 fee	et or more?	NOT SATISFIED
Warrant 6:	Accident Ex	perience		
Yes	No	Is 80% or more of one of Warrants #1, #	#2, or #3 met?	
Yes	No	Have there been more than five acciden		
		correction by a traffic signal in 12 month	is?	NOT APPLICABLE
Warrant 7:	System War	rant		
Yes	No	Is the peak hour (or each of five hours o	n weekend)	
		entering traffic volume on all approaches		
		Check applicable characteristics of each	n route	
		official applicable characteristics of cast	Troute.	
	r Street	13	45	
Mino	r Street	123	45	
		Definition of Characteristics		
1 It is nart	of street or hic	ghway system that serves as the principal ne	etwork for through traffic f	low
		incipal traffic generation.	ctwork for through traine i	OVV.
		urban highways outside, entering or traversi	ing a city.	
		eeway or expressway ramp terminals.	,	•
		oute on an official plan such as a major stre	eet plan in an urban area	
traffic an	d transportation	on study.		NOT APPLICABLE
Warrant 8:	Combination	of Warrants		
Yes	No	Are 80% or more of two of Warrants #1,	, #2, or #3 met?	SATISFIED
Other Warra	ants (Attach S	Supplemental Sheets)		
Yes	No	Warrant 9: Four Hour Volumes		SATISFIED
Yes	No	Warrant 10: Peak Hour Delay		NOT REVIEWED
Yes	No	Warrant 11: Peak Hour Volume		SATISFIED
Yes	No	Warrant 12: Traffic Actuated Signals		SATISFIED
Remarks				

TOTAL NUMBER OF WARRANTS SATISFIED

WARRANT #9 FOUR HOUR VOLUME WARRANT


NOTE: 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE,

WARRANT 11 PEAK HOUR VOLUME WARRANT (Figure 4-5) 2 & 2 600 MINOR STREET - HIGH VOLUME APPROACH - VPH 2 & 1 • 1 & 1 100 0 -400 800 1200 1600 2000 2400 2800


MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH

NOTE: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE,

WARRANT 12 - (8 Hour URBAN) Traffic Actuated Figure 4-2.4

WARRANT 12 - (2 Hours URBAN) Traffic Actuated Figure 4-2.6

MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH

TRAFFIC SURVEY - COUNT ANALYSIS 1980 TMUTCD WARRANTS (Rev. 5)

County:	Bexar	Mapsco Coordinates:	519-A4
City:	San Antonio	Survey Date: 2005 PR	OJECTED
		# Approach Lanes	85% Speed
Major	JUDSON ROAD	2	40
Minor	MNT VISTA DR	2	30

Eight High Hours: Lowest Volume of 8 hour study is the 8th highest hour. Major and minor 8th high hours may not be the same hour.

Time Begins	Major Both App Vehicles	Minor High Vo Vehicles	
7:00 AM	1,551	 375	
8:00 AM	1,133	278	
4:00 PM	1,245	159	
5:00 PM	1,193	159	
3:00 PM	1,025	154	
6:00 PM	968	 165	
2:00 PM	758	117	
6:00 AM	677	 156	

Comments PROJECTED CONDITIONS FOR 2005 WITH ELEM SCHOOL & MIDDLE SCHOOL, PLUS BUILDOUT OF STEUBING RANCH SATISFY WARRANTS FOR SIGNALIZATION. RECOMMENDATION: THE INSTALLATION OF A TRAFFIC SIGNAL IS EXPECTED TO IMPROVE THE OPERATION AND SAFETY OF THE INTERSECTION.

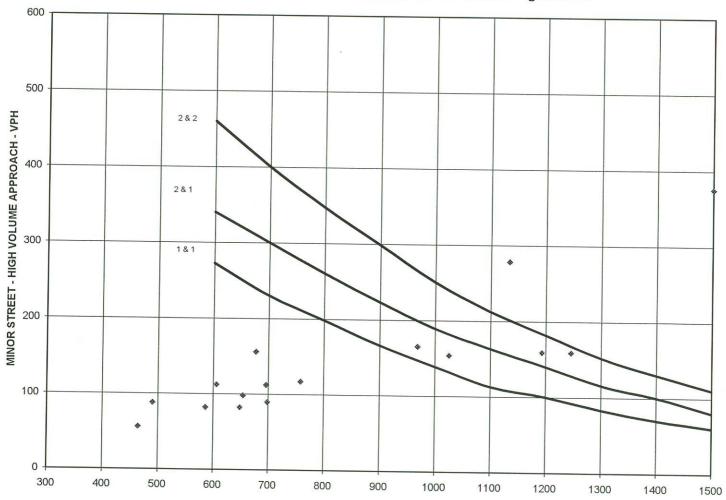
Warrant 1: Minimum Vehicular Volume

		Major S	St Both App	roaches		Minor S	St High Volu	me Appr.	
Number of	of Lanes	8	th Highest Ho	our		8	8th Highest Ho	our	
Major	Minor	Requ	uired	Existing		Re	quired	Existing	
Street	Street	Urban	Rural		%	Urban	Rural		%
1	1	500	350	-		150	105		
2 or >	1	600	420	-		150	105	-	
2 or >	2 or >	600	420	677	113%	200	140	156	78%
1	2 or >	500	350	-		200	140	_	

NOT SATISFIED

Warrant 2: I	nterruption of	f Continuous	Traffic						
	• • • • • • • • • • • • • • • • • • • •		St Both App	roaches		Minor S	t High Volu	me Appr.	
Number	of Lanes	8	th Highest Ho	our		8	8th Highest Ho	our	
Major	Minor	Req	uired	Existing		Red	quired	Existing	
Street	Street	Urban	Rural		%	Urban	Rural		%
1	1	750	525	=		75	52	_	
2 or >	1	900	630	-		75	52	-	
2 or >	2 or >	900	630	677	75%	100	70	156	156%
1	2 or >	750	525	-		100	70	_	
							NOT	SATISFIED	

Warrant 3:	Minimum Pe	edestrian Volume		
	V	Najor Street Traffic	Ped. X-W	alk Across Maj. St.
			Required	
Yes	No	< than 60 gaps/hr. in traffic stream		<3.5" Existing
Yes	No	> than 300 ft. to nearest signal?	Four Hours 100	50 %
			One Hour 190	95
				NOT SATISFIED
Warrant 4:	School Cros	ssina	ii.	
		Is the number of adequate gaps in the tra	affic stream during	
Yes	No	the period when the children are using th		
	MARIE P. C. C.	than the number of minutes in the same		NOT APPLICABLE
Warrant 5:	Progressive	e Movement		
Yes	No	Are the adjacent signals in a signal syste	em?	
Yes	No	Would the resultant spacing be 1000 fee	et or more?	NOT SATISFIED
Warrant 6:	Accident Ex			
Yes	No	Is 80% or more of one of Warrants #1, #		
Yes	No	Have there been more than five accident		
		correction by a traffic signal in 12 months	s?	NOT APPLICABLE
Warrant 7:	System War	rrant		
Yes	No	Is the peak hour (or each of five hours or	n weekend)	
		entering traffic volume on all approaches	greater than 1000?	
		Charle applicable abayestaristics of sook	routo	
		Check applicable characteristics of each	route.	
	r Street	123	45	
Mino	r Street	1 2 3	45	
		Definition of Characteristics		
1. It is part	of street or hi	ghway system that serves as the principal ne	etwork for through traffic f	OW.
		rincipal traffic generation.	•••••••••••••••••••••••••••••••••••••••	
		ourban highways outside, entering or traversi	ng a city.	
4. It has sur	rface street fr	reeway or expressway ramp terminals.		
		route on an official plan such as a major stre	et plan in an urban area	
traffic an	d transportati	ion study.		NOT APPLICABLE
Warrant 8:	Combinatio	n of Warrants		
Yes	No	Are 80% or more of two of Warrants #1,	#2, or #3 met?	NOT SATISFIED
Other Warra	ants (Attach	Supplemental Sheets)		
Yes	No	Warrant 9: Four Hour Volumes		NOT SATISFIED
Yes	No	Warrant 10: Peak Hour Delay		NOT REVIEWED
Yes	No	Warrant 11: Peak Hour Volume		SATISFIED
Yes	No	Warrant 12: Traffic Actuated Signals		SATISFIED
Remarks				


TOTAL NUMBER OF WARRANTS SATISFIED

WARRANT 11 PEAK HOUR VOLUME WARRANT (Figure 4-5) 2&2 600 MINOR STREET - HIGH VOLUME APPROACH - VPH 2&1 500 1 & 1 300 100 400 800 1200 1600 2000 2400 2800

MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH

NOTE: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE,

WARRANT 12 - (2 Hours URBAN) Traffic Actuated Figure 4-2.6

MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH

APPENDIX F

ADT CALCULATION WORKSHEETS

						JUDSON	& KNOL	LCREEK IN	ITERSEC	TION AP	PROACH	VOLUM	ES				
	NB	NB	NB	NB	NB	NB		SB	SB	SB	SB	SB					
	Approach	Middle	Middle	DU's	Existing	Projected		Approach	Middle	DU's	Existing	Growth		EB	EB	EB	
	Elementary	Entering	Exiting	Entering	2001	2005		Elementary	In Dist.	Entering	2001	2005		Approach	Middle	DU's	Total
10.1	45%	9%	18%				Total	5%(15%)	2%(33%)				Total	Elementary	40%(13%)	Exiting	
12-1 am	0	0	0	13	18	3	34	0	0	6		10	71	0	0	19	19
1-2 am	1	0	0	6	14	2	23	0	0	3		4	29	1	0	9	10
2-3 am	0	0	0	5	12	2	19	0	0	2	15	3	20	0	1	7	7
3-4 am	1	0	0	3	9	2	14	0	0	2	10	- 2	13	0	0	5	5
4-5 am	1	0	0	7	31	5	44	0	0	3	11	2	16	1	0	11	11
5-6 am	3	0	0	17	80	14	114	0	0	8	17	3	28	2	1	24	27
6-7 am	8	1	1	83	328	56	476	1	0	38	143	24	206	4	2	118	124
7-8 am	190	2	2	88	619	105	1005	21	1	40	331	56	449	210	4	277	491
8-9 am	6	56	87	88	407	69	713	1	13	40	249	42	345	17	199	277	493
9-10 am	6	2	7	73	244	41	374	1	1	33	172	29	236	9	16	104	129
10-11 am	9	2	4	70	211	36	332	1	1	32	189	32	255	13	8	100	121
11-12 pm	11	3	5	84	242	41	386	1	1	38	233	40	313	10	12	119	142
12-1 pm	7	3	4	35	246	42	337	2	13	89	237	40	382	11	3	121	135
1-2 pm	9	2	5	32	236	40	325	3	8	82	211	36	341	13	4	112	129
2-3 pm	58	3	6	34	218	37	356	19	10	88	260	44	422	50	5	120	174
3-4 pm	56	17	24	45	275	47	464	19	67	116	355	60	617	71	18	158	246
4-5pm	23	16	35	78	347	59	558	8	64	200	475	81	827	77	26	140	243
5-6 pm	19	7	38	78	347	59	548	6	27	200	475	81	788	26	28	140	194
6-7 pm	11	6	13	47	280	48	404	4	22	122	383	65	595	22	10	166	198
7-8 pm	. 6	3	11	32	196	33	282	2	12	83	255	43	396	10	8	113	131
8-9 pm	1	2	5	24	151	26	209	0	7	63	189	32	291	15	4	85	103
9-10pm	1	0	7	24	128	22	182	0	1	61	202	34	298	0	5	83	88
10-11pm	0	0	0	15	78	13	106	0	1	37	125	21	185	0	0	51	51
11-12 am	0	0	0	8	42	7	57	0	0	21	71	12	104	0	0	28	28
	425	125	255	990	4759	809	7363	90	248	1407	4686.0	797	7227	561	354	2386	3300

Growth 2005 (1+r)^n r=4% n=4 Rate=1.17

KNOLLCREEK AT JUDSON ROAD

	WB	WB	WB	WB	
	Middle	Elem	DU's	DU's	Total
	10%(31%)	55%(55%)	From N	From S	
12-1 am	0	0	13	6	19
1-2 am	0	1	6	3	10
2-3 am	0	0	5	2	7
3-4 am	0	1	3	2	5
4-5 am	0	1	7	3	11
5-6 am	0	3	17	8	28
6-7 am	1	9	83	38	131
7-8 am	3	232	88	40	362
8-9 am	66	8	88	40	201
9-10 am	2	8	73	33	117
10-11 am	2	11	70	32	116
11-12 pm	3	14	84	38	139
12-1 pm	12	9	35	89	145
1-2 pm	8	11	32	82	133
2-3 pm	10	71	34	88	203
3-4 pm	63	68	45	116	292
4-5pm	60	28	78	200	366
5-6 pm	25	23	78	200	326
6-7 pm	20	13	47	122	203
7-8 pm	11	8	32	83	134
8-9 pm	7	1	24	63	95
9-10pm	1	1	24	61	86
10-11pm	1	0	15	37	53
11-12 am	0	0	8	21	29
	295	519	990	1407	3210

DWELLING UNIT VOLUME DISTRIBUTION

			NB+SB	883/2 DU's			Exiting	Entering	Out			In			JUDSON	ROAD
	count data	1	Distribution	4225 trips			EB Tot	WB Tot	EB Total	NB	SB	WB Total	NB	SB	NB	SB
	NB	SB		DW Volume	Exiting	Entering	90%(90%)	93%	All Du's	73%(38%)	27%(62%)	All DU's	68%(28%)	31%(72%)	Total	Total
12-1 am	18	56	0.007834	33.1	16.6	16.6	14.9	15.4	18.5	13.5	5.0	19.2	13.0	5.9	26.6	10.9
1-2 am	14	22	0.003811	16.2	8.1	8.1	7.3	7.5	9.1	6.6	2.5	9.4	6.4	2.9	13.0	5.4
2-3 am	12	15	0.002858	12.1	6.1	6.1	5.4	5.6	6.8	5.0	1.8	7.0	4.8	2.2	9.7	4.0
3-4 am	9	10	0.002011	8.5	4.3	4.3	3.8	4.0	4.8	3.5	1.3	4.9	3.4	1.5	6.8	2.8
4-5 am	31	11	0.004446	18.8	9.4	9.4	8.5	8.7	10.5	7.7	2.8	10.9	7.4	3.4	15.1	6.2
5-6 am	80	17	0.010269	43.4	21.7	21.7	19.5	20.2	24.3	17.7	6.6	25.1	17,1	7.8	34.8	14.4
6-7 am	328	143	0.049862	210.7	105.4	105.4	94.8	98.0	117.9	86.1	31.8	122.0	83.0	37.8	169.0	69.7
7-8 am	513	290	0.08501	359.2	247.8	111.4	223.1	103.6	277.4	202.5	74.9	128.9	87.7	40.0	290.2	114.9
8-9 am	513	290	0.08501	359.2	247.8	111.4	223.1	103.6	277.4	202.5	74.9	128.9	87.7	40.0	290.2	114.9
9-10 am	244	172	0.04404	186.1	93.1	93.1	83.7	86.5	104.1	76.0	28.1	107.8	73.3	33.4	149.3	61.5
10-11 am	211	189	0.042346	179.0	89.5	89.5		83.2	100.2	73.1	27.0	103.6	70.5	32.1	143.6	59.2
11-12 pm	242	233	0.050286	212.5	106.3	106.3	95.6	98.8	119.0	86.8	32.1	123.1	83.7	38.2	170.5	70.3
12-1 pm	246	237	0.051133	216.1	108.1	108.1	97.2	100.5	120.9	46.0	75.0	123.6	34.6	89.0	80.6	163.9
1-2 pm	236	211	0.047322	200.0	100.0	100.0		93.0	111.9	42.5	69.4	114.4	32.0	82.3	74.6	151.7
2-3 pm	218	260	0.050603	213.8	106.9	106.9	96.2	99.4	119.6	45.5	74.2	122.2	34.2	0.88	79.7	162.2
3-4 pm	275	355	0.066695	281.8	140.9	140.9	126.8	131.0	157.7	59.9	97.8	161.1	45.1	116.0	105.0	213.8
4-5pm	347	475	0.087021	367.7	125.0	242.7	112.5	225.7	139.9	53.2	86.8	277.5	77.7	199.8	130.9	286.5
5-6 pm	347	475	0.087021	367.7	125.0	242.7	112.5	225.7	139.9	53.2	86.8	277.5	77.7	199.8	130.9	286.5
6-7 pm	280	383	0.070188	296.6	148.3	148.3	133.5	137.9	166.0	63.1	102.9	169.6	47.5	122.1	110.6	225.0
7-8 pm	196	255	0.047745	201.8	100.9	100.9		93.8	112.9	42.9	70.0	115.4	32.3	83.1	75.2	153.1
8-9 pm	151	189	0.035994	152.1	76.1	76.1	68.4	70.7	85.1	32.4	52.8	87.0	24.4	62.6	56.7	115.4
9-10pm	128	202	0.034935	147.7	73.9	73.9		68.7	82.7	31.4	51.3	84.4	23.6	60.8	55.1	112.1
10-11pm	78	125	0.021491	90.8	45.4	45.4	40.9	42.2	50.8	19.3	31.5	51.9	14.5	37.4	33.9	68.9
11-12 am	42	71	0.011963	50.6	25.3	25.3	22.8	23.5	28.3	10.8	17.6	28.9	8.1	20.8	18.9	38.4
	4759	4686	1.0	4225.5	2131.6	2093.9	1918.4	1947.3	2385.9	1281.1	1104.8	2404.3	989.6	1406.9	2270.7	2511.6

	129 DU's			Exiting	Entering
	1235 Trips			EB Total	WB Total
	DW Volume	Exiting	Entering	75%(75%)	78%(73%)
12-1 am	9.7	4.9	4.9	3.6	3.8
1-2 am	4.8	2.4	2.4	1.8	1.9
2-3 am	3.6	1.8	1.8	1.4	1.4
3-4 am	2.5	1.3	1.3	0.9	1.0
4-5 am	5.5	2.8	2.8	2.1	2.1
5-6 am	12.7	6.4	6.4	4.8	5.0
6-7 am	61.6	30.8	30.8	23.1	24.0
7-8 am	105.0	72.5	32.6	54.3	25.4
8-9 am	105.0	72.5	32.6	54.3	25.4
9-10 am	54.4	27.2	27.2	20.4	21.2
10-11 am	52.3	26.2	26.2	19.6	20.4
11-12 pm	62.2	31.1	31.1	23.3	24.3
12-1 pm	63.2	31.6	31.6	23.7	23.1
1-2 pm	58.5	29.3	29.3	21.9	21.4
2-3 pm	62.5	31.3	31.3	23.4	22.8
3-4 pm	82.4	41.2	41.2	30.9	30.1
4-5pm	107.5	36.6	71.0	27.4	51.8
5-6 pm	107.5	36.6	71.0	27.4	51.8
6-7 pm	86.7	43.4	43.4	32.5	31.6
7-8 pm	59.0	29.5	29.5	22.1	21.5
8-9 pm	44.5	22.3	22.3	16.7	16.2
9-10pm	43.2	21.6	21.6	16.2	15.8
10-11pm	26.6	13.3	13.3	10.0	9.7
11-12 am	14.8	7.4	7.4	5.6	5.4
-	1235.7	623.4	612.4	467.5	457.0

		Elem.	Middle
		Count	Count
12-1 am	00	0	0
1-2 am	01	1	0
2-3 am	02	0	1
3-4 am	03	1	0
4-5 am	04	1	1
5-6 am	05	6	1
6-7 am	06	19	6
7-8 am	07	483	19
8-9 am	08	16	483
9-10 am	09	16	16
10-11 am	10	22	16
11-12 pm	11	28	22
12-1 pm	12	18	28
1-2 pm	13	22	18
2-3 pm	14	148	22
3-4 pm	15	141	148
4-5pm	16	58	141
5-6 pm	17	48	58
6-7 pm	18	26	48
7-8 pm	19	16	26
8-9 pm	20	2	16
9-10pm	21	2	2
10-11pm	22	0	2
11-12 pm	23	0	0
		1074	1074

Vehicle Totals								
On NB Juds	son	Inbound	Out(EB)	Inbound	Outbound			
%	%	Elementary	Elementary	Middle	Middle			
Elementary	Middle	45%(45%)	45%(25%)	17%(14%)	60%(12%)			
0.0	0.0	0.0	0.0	0.0	0.0			
0.1	0.0	0.5	0.5	0.0	0.0			
0.0	0.1	0.0	0.0	0.2	0.6			
0.1	0.0	0.5	0.0	0.0	0.0			
0.1	0.1	0.5	0.5	0.2	0.0			
0.6	0.1	2.6	1.3	0.2	0.6			
1.8	0.6	7.6	3.0	1.0	1.7			
45.0	1.8	189.5	145.3	2.8	3.9			
1.5	45.0	6.4	11.4	69.3	185.6			
1.5	1.5	6.4	5.9	2.4	14.7			
2.1	1.5	8.9	8.9	2.4	7.7			
2.7	2.1	11.4	7.2	3.3	11.5			
1.7	2.7	7.2	5.0	4.2	9.3			
2.1	1.7	8.9	5.9	2.7	2.3			
13.8	2.1	58.1	22.7	3.3	2.8			
13.2	13.8	55.6	32.1	21.3	10.4			
5.5	13.2	23.2	35.1	20.4	14.9			
4.5	5.5	19.0	11.7	8.5	16.3			
2.5	4.5	10.6	10.1	7.0	5.5			
1.5	2.5	6.4	4.7	3.9	4.6			
0.2	1.5	0.9	6.6	2.4	2.2			
0.2	0.2	0.9	0.0	0.4	3.1			
0.0	0.2	0.0	0.0	0.4	0.0			
0.0	0.0	0.0	0.0	0.0	0.0			
100.70	100.70	425.1	317.9	156.3	297.7			

Stuebing Outbound							
		Elem.	Middle				
		Count	Count				
12-1 am	0	0	0				
1-2 am	1	1	0				
2-3 am	2	0	1				
3-4 am	3	0	0				
4-5 am	4	1	0				
5-6 am	5	3	1				
6-7 am	6	7	3				
7-8 am	7	366	7				
8-9 am	8	28	366				
9-10 am	9	14	28				
10-11 am	10	22	14				
11-12 pm	11	18	22				
12-1 pm	12	22	18				
1-2 pm	13	26	22				
2-3 pm	14	102	26				
3-4 pm	15	145	102				
4-5pm	16	159	145				
5-6 pm	17	53	159				
6-7 pm	18	45	53				
7-8 pm	19	21	45				
8-9 pm	20	29	21				
9-10pm	21	0	29				
10-11pm	22	0	0				
11-12 pm	23	0	0				
		1062	1062				

Vehicle Totals							
SB Judson		Out(EB)	Inbound	Outbound	Inbound		
%	%	Elementary	Elementary	Middle	Middle		
Elementary	Middle	20%(30%)	5%(15%)	16%(31%)	2%(33%)		
0.00	0.00	0.0	0.0	0.0	0.0		
0.10	0.00	0.2	0.1	0.0	0.0		
0.00	0.10	0.0	0.0	0.2	0.1		
0.00	0.00	0.0	0.1	0.0	0.0		
0.10	0.00	0.2	0.1	0.0	0.1		
0.30	0.10	0.6	0.3	0.2	0.1		
0.70	0.30	1.4	0.9	0.5	0.2		
34.50	0.70	64.6	21.2	1.1	0.4		
2.70	34.10	5.1	0.8	49.5	8.1		
1.40	2.70	2.7	0.8	4.0	0.3		
2.10	1.40	4.0	1.0	2.1	0.3		
1.70	2.10	3.2	1.3	3.1	0.4		
2.10	1.70	6.0	2.4	4.8	8.1		
2.50	2.10	7.1	3.0	6.0	5.1		
9.70	2.50	27.3	19.4	7.1	6.3		
13.70	9.50	38.5	18.5	26.7	41.3		
15.00	13.60	42.2	7.7	38.3	39.5		
5.00	14.90	14.1	6.3	41.9	16.5		
4.30	5.00	12.1	3.5	14.1	13.5		
2.00	4.20	5.7	2.1	11.9	7.5		
2.80	2.00	7.9	0.3	5.7	4.5		
0.00	2.80	0.0	0.3	7.9	0.6		
0.00	0.00	0.0	0.0	0.0	0.6		
0.00	0.00	0.0	0.0	0.0	0.0		
100.70	99.80	242.9	90.1	225.1	153.5		